Command Line Tools User
Guide

(Formerly the Development System Reference Guide)

UG628 (v 12.1) April 19, 2010

& XILINXe

& XILINX.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you
solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce,
distribute, republish, download, display, post, or transmit the Documentation in any form or by any means
including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation.
Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx
assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections
or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING

THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LTABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE
DOCUMENTATION.

© Copyright 2002-2010 Xilinx Inc. All Rights Reserved. XILINX, the Xilinx logo, the Brand Window and other
designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their
respective owners. The PowerPC name and logo are registered trademarks of IBM Corp., and used under license.
All other trademarks are the property of their respective owners.

Command Line Tools User Guide
2 www.Xxilinx.com UG628 (v 12.1) April 19, 2010

Table of Contents

(04 aF=T o] (=T b A [o £ o Yo [o o] o S P 17
Command Line Program OVeIVIeWccueerivuieineeniueinnnennnnecnnneenneesnnecnnee 17
Command Line SYNtaX........ccceveervueenseiinniiinniinnniinnneinnecnnecmeemeeemeemsesse 18
Command Line OPLionscueeeiieiniiiniiinniiiniiinneinecneenmeemeeemeemmesnee 18

-f (Execute Commands File)...........coouiiiiiiiiiiiiiiiiiiii e 18
Ch (HEIP) oo 19
-intstyle (Integration Style) ... 20
-p (Part NUMDET) ...oovviiiiiiiiiiiiiiiiiiiii 21
Invoking Command Line Programs..........cceeeevueiisieinneinnnennnecnnnecnneennnecnnes 22

Chapter 2 DeSigN FIOW.......coooiiiiiiiii e 23
Design FIOW OVEIVIEWuuiivuiiniiniinniiiniiiniiniiniiiniiniesnsessesnessesssesssessesssesns 23
Design Entry and Synthesiso.couiiiiniiniiniiiniiniinninnniiiinienneneenennenn, 26
Hierarchical DeSigncccvvuiivuiiniinniiiniiniiniiniiiiiiennncnecnessessscsssessessseenns 26
Partitions.....oueeiiieiniiiiiiiiiicir s 27

PXIML FILE ..ottt 27
Schematic ENtry OVeIVIEWcucovuiiniiniiinniiiniiniinininiiniennncneennesnsessessessseens 28
Library EIEMENtScuuuiiiiiiiiiiiiiiiiiiiiiiiiii 28
CORE Generator Tool (FPGAS Only).........ccccccoviiii, 29
HDL Entry and Synthesisccouueiiiiinniiinniininiinniinnieinienniecneecnecsnnecnne 29
Functional Simulation ... 29
CONSIAINES ..eeeenreiiiiiiiienieieceenecree e sseess e saesanesaneans 29
Mapping Constraints (FPGAS Only).........coooiiiiiiiiiiiiiiiiiiii i, 30
Block PLaCement.uuiiiiiiiiiiiiii e 30
Timing Specificationsuvuiiiiiiiiiii 30
Netlist Translation Programs..........ccueeeiueennecninueinnicnnuecnneennneenneesneesneesnnees 30
Design Implementation........c.ccouiinniiniiiiiiiininiinneinnneineecieceesneesneesennees 30
Mapping (FPGAS ONly).....coiiiiiiiiiiiiiiniiniintiinnenieniecnnenesneessessessesseens 32
Placing and Routing (FPGAS ONly)ccoeevviiviuiiniiiniuiinneeninecnnecnnnecnnneecnnnes 33
Bitstream Generation (FPGAS ONly)cccevveiiiiiinneinnneinneinnnecnneecnnecnneecnnes 33
Design Verification..........couueiiuiiiiuiinniinniiinniininiinienieceesiecsneessneessssesesees 33
SIMUIAtION .ottt 35
Back-ANNOTAtiONuuiiiiiiiieiiiii et 35
INEEGETL ..ttt e ettt ettt e e ettt e e ettt e e e enai e eeees 36
Functional SImulationooouiiiiiiiiiiiiiiiii e 37
Timing Simulation ... 37
HDL-Based SImulation..........cccuuviiiiiiiniiiiiineceiii et 37
Static Timing Analysis (FPGAS Only)ceviiniiniinieniinieniinienienienecniennenen 39
In-Circuit Verificationccoiiiieeiniiiniuiiiniiniiiinicnneccnecssecssseesseesssseesssaees 39
Design Rule Checker (FPGAS Only)coooviiiiiiiiiiiiiiii, 39
PIODE et 39

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com

& XILINXe

ChipScope™ ILA and ChipScope Pro............couuuiiiiiiiiiiiiiiiiin, 39
FPGA Design TiPs ccceeeueeieineinienienieenienieniestecntesiessssesssessessssssssssssssssesssnsnns 39
Design Size and Performance................cccccoiiiii 40
Chapter 3 PARTGEN ..o e e et e e e e e e e e e e e e aaaaaaaaeas 41
PARTGEN OVEIVIEW.....ueeeteiientiiientiiientieiesietessessessessessessssssessssssesssssssssssseses 41
DeViCe SUPPOTE...uuieiiiiiiiiiiiiiiiiii 41
PARTGen Input Files ..., 41
PARTGen Output Files...........uuuiiiiiiiiiiii s 41
PARTGen Partlist Filesoouiiiiiiiiiiis 41
PARTGen Package Files.............oooiiiiiiiiiiiiiiiiii i, 45
PARTGEN SYNtAX...ciiriiriiiiriiiinienienieeneeniesieeneeseestessseesssessaessasessssssassssesssnsnns 47
PARTGen Command Line Options..........coueieeienienienieniesenienennenennennenenns 47
-arch (Output Information for Specified Architecture).............cccccooeoviiii, 48

-i (Output List of Devices, Packages, and Speeds)...............cccooiiiii, 48
-intstyle (Integration Style)cccooviiiiiiiiiii, 48
-nopkgfile (Generate No Package File)................cocoiiinii 49

-p (Generate Partlist and Package Files)cccooooi, 49

-v (Generate Partlist and Package Files)ccccoooiiiiiiiiii . 50

(O gT=T o (=T A NN 1= (=T o 1P 51
NetGen OVeIVIEWucuiieieiiieiecieneeeeeentes et ae e sassaessaneans 51
INEtGEN FLIOWS. ..ottt 51
NetGen Device SUPPOTIt........uuiiiiiiiiiiiiiiiiiii 52
NetGen Simulation FIOW.........ciiiiiniiiiniiiiicicicieccnecesneecnen s 53
NetGen Functional Simulation FIOW...............cccccoooo 53
NetGen Timing Simulation FIOW............cccooooo, 54
Options for NetGen Simulation FIOW ... 56
Verilog-Specific Options for Functional and Timing Simulation 60
VHDL-Specific Options for Functional and Timing Simulation 62
NetGen Equivalence Checking FIOWccueovieieniiniiniiniininieeciecectecneenenne 63
Post-NGDBuild FIow for FPGASccciiii 63
Post-Implementation Flow for FPGAS ...t 63
Input files for NetGen Equivalence Checking..............ccccooovviiiiiiiiiiii, 64
Output files for NetGen Equivalence Checkingcoccooiii, 64
Syntax for NetGen Equivalence Checking...............cccccccciiiiiiiiiiiiiiiiis 64
Options for NetGen Equivalence Checking Flow..................ooconi, 65
NetGen Static Timing Analysis FIOWcccooeeienieniiniinieniiieneciecectecneenene 67
Static Timing Analysis Flow for FPGAS.............ccccoiii, 68
Input files for Static Timing Analysis.........ccccccciiiiiiiis 68
Output files for Static Timing Analysis............ccccocccciii, 68
Syntax for NetGen Static Timing Analysiscccccciiiiiiiiii, 68
Options for NetGen Static Timing Analysis Flowocciiiiiis 69
Preserving and Writing Hierarchy Filesccoccevvviniinninniiniinsienniiineinnennnnnnns 71
Testbench File..........cccooiiiiiiiii 72
Hierarchy Information File ... 72
Dedicated Global Signals in Back-Annotation Simulationcc..ccue.e. 73
Global Signals in Verilog Netlist.............ccoooiiiiiiiii, 73
Global Signals in VHDL Netlist...........ocoos 73

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 5 Logical Design Rule CheCk (DRC)........ccuuiiiiiiiiiiiiiieiieeeieeeeeeeeeeeaaeaae e 75
Logical DRC OVEIVIEWcovuiiruiiniinniiiniiiniinieniecsiiniesssissessessessssesssesssssssens 75
Logical DRC Device SUPPOTtuuuuuiiiiiiiiiiiiiiiiiiiii i, 75
Logical DRC Checksccovuiiiuiiiiuiiinniiiiiiinniiiniinniecnnecnnnecnnecsssseesseessssesssees 76
BIOCK CRECK. ...ttt ettt eeees 76

INEt CRECK ettt ettt et e e et e eeees 76

Pad Check ..coooiiiiiiiiie ettt et 77
Clock Buffer Checkooouuuiiiiiii e 78
INAME CRECK ...ttt ettt e eeees 78
Primitive Pin Checkoooiiiiiiiiiiicc e 78
Chapter 6 NGDBUIIGoooiii e 79
NGDBUIld OVEIVIEW ...ucciivuriiiniiiitiiiiiiiniiiinitciitcnrecnne e cssssesssesssssessssees 79
NGDBuild Design FIOWcuuiiiiiiiiiiiiii 79
NGDBuild Device SUPPOTtcuiiiiiiiiiiiiiiiii 79
Converting a Netlist to an NGD File...............cccccoos 80
NGDBuild Input Filesuuiiiiiiiiiiiiiii 80
NGDBuild Intermediate Filescccouuiviiiiiiiiiiiiiiiiiiiiie e 82
NGDBuild Output Files.............occiiiiiiiiiiiiiii, 82
NGDBUIld SYNtaX ...c.covuivieiiiiiiiiiiiiiiiiieiienrcteceee e eseae 82
NGDBUild OPtions........cciuiiiuiiiniiinniiiniiiniiiecrecneceecseesssesssesssesssees 83
-a (Add PADs to Top-Level Port Signals)cccccceiiiiiiiiins 83

-aul (Allow Unmatched LOCS).....iiiiiiiiiiiiiiiieiiiiie et 84

-aut (Allow Unmatched Timegroups).........cccevviiiiiiiiiiiiiiiiiiiiiiis 84

-bm (Specify BMM Files)cuiiiiiiiiiii 84

-dd (Destination Directory)............ueeeiiiiiiiiiiiiiiiiiiii 84

-f (Execute Commands File).........cooiiiiiiiiiiiiiiiiiiiiiie e 85

-1 (Ignore UCE File)ouiiiiiiiiiiiiiiiiiiiiiiii 85
-insert_keep_hierarchy (Insert KEEP_HIERARCHY constraint)................cc...ee.. 85
-intstyle (Integration Style)oeevieiii 85
filter (FALter Fle)...o.uuniiiiii i 86

-1 (Libraries t0 SEArCh)uuieeiiiieiiiiin e 86

-nt (Netlist Translation TyPe)cceeeiiiiiiiiiiiiiiiii 86

-p (Part NUMDET)oeiiiiiiiiiiiiiiiiiiiii 86
~quiet (QUIEL)...oiiiiiiiii s 87

-1 (Ignore LOC Constraints)cccoooviiiiiiiiiiiiiiii, 87

-sd (Search Specified Directory)oooociiiiiiiiiiiiiiii 87

-u (Allow Unexpanded BlOCKS)ccoooiiiiiiiiiiiiii i, 87

-uc (User Constraints File)uvviiiiiiiiiiiiiiiieeeiiiee e 88

-ur (Read User Rules File)......ccouuuviiiiiiiiiiiiiiiiii i 88
-verbose (Report All MeSSages)cevviiiiiiiiiiiiiiiiiiiiiciciiiiiiii e, 88
Chapter 7 MAP ... 89
MAP OVEIVIEW...uuiirtiiriiiiiiiiinirinieiieiiseiesseessesssessessssesssessssssssssssssssessssssssssns 89
MAP DeSIgN FIOWuuiiiiiiiiiiiiiiiiiiiiiiiiciieeieceeee e 90
MAP Device SUPPOTtcoooiiiiiiiiiiiiiiccccc e 90
MAP INpUt Filesooviiiiiiiiiiiiiiiiiiiiiiii 90
MAP Output Files........oouiiiiiiiiiiiiiiiiiiii 91

Y N gl i 4T UL 91
MAP SYNEAX..uuiiiiiiiiiiiiiieniitinieenieecteeneesteesaeeessesssaseesaeessseesssaesssssssssssssssnes 92
MAP OPHONS....ceiiiitiitiiiiiiiiitinieniecrerenneer s essnessessssesssesssesssesssnenns 94
-activity_file (Activity File)ooeiiii 94

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com

& XILINXe

-bp (Map Slice LOZIC) ...ooiiiiiiiiiiiiiiiiiii i 95

“C (PACK SHCES) .. eeeeiiie ettt ettt e et e e e et e eeeeaaa e eeees 95

-CM (COVET MOAR) ettt et eea e eees 96
-detail (Generate Detailed MAP Report)coueiiiiiiiiiiiiiiiiiii, 96
-equivalent_register_removal (Remove Redundant Registers)............................. 96

-f (Execute Commands File)...........coouuiiiiiiiiiiiiiiii e 97
-global_opt (Global Optimization).............cocoiiiiiiiiiiiiiiiii i, 97
-ignore_keep_hierarchy (Ignore KEEP_HIERARCHY Properties).............ccc...... 97
-intstyle (Integration Style)cccoooiiii 98

-ir (Do Not Use RLOCs to Generate RPMS)cccuuiiiiiiiiiiiiiiiiiiiiiiieciieceieeee 98
SFAlter (FALEET Fle)..eevuuniiiiii et 98

-le (Lut Combining)........evvvviiiiiiiiiiiiiiiiiii 98
-logic_opt (Logic Optimization)ccooiiiiiiiiiiiiiiiiii i, 99

-mt (Multi-Threading)eueuiiiiiiii 99

-ntd (Non Timing DIiven) ... 99

-0 (Output File Name)ooooiiiiiiiiiiiiiiiiii 99

-0l (Overall Effort Level).......ccouuuiiiiiiiiieieeiiiie et 100

-p (Part NUMDET) ..., 100
-power (Power Optimization)coooiiiiiiiiiiii, 101

-pr (Pack Registers in I/O)............uuuiiiiiiiiiiiiiiiiiii 101
-register_duplication (Duplicate Registers)cc.ccccccoeiiiiiiii 101
-retiming (Register Retiming During Global Optimization).................cccoevvvunnn. 102
-smartguide (SMartGuide).............euuiiiiiiiiiiiiiiii 102

-t (Placer Cost Table)ccuuuuiiiiiiiieieiiii et 103
-timing (Timing-Driven Packing and Placement)..............cccccccveeiiiniiinn. 103

-u (Do Not Remove Unused LOGIC)coeuiiiiiiiiiiiiiiiii, 104

-w (Overwrite Existing Files)ccccccoiiiiii 104

-X (Performance Evaluation Mode)cccouuiviiiiiiiniiiiiiii e 104

-Xe (Extra Effort Level)iiiiiiiiieiiiiie e 104

-xt (Extra Placer Cost Table)veiiiiiiiiiiiiiiieiiiiiiee et 105
Resynthesis and Physical Synthesis Optimizations..........ccceceevevrenuennennnennen. 105
Guided Mapping......ccceeveeniiniinniiiniiniiniiniriienieeeesereenssssesesssssseses 105
Simulating Map Resultscouuviiiniiniiniiiiiiiniinieniiiicienieinecnennesneennens 106
MAP Report (MRP) File......cuuiiniiniiiiiiiiiiieieniecieieniecrennesneennessnesanes 107
Physical Synthesis Report (PSR) File.......cccccovvevuinnuinniiniinnnenniineennnennnecnnennnes 115
Halting MAP ...ttt sssesssesssessssesssessssssnes 116
Chapter 8 Physical Design Rule ChecK...........ccccuviiiiiiiiiiiiiiciieeeeeeeee, 117
DRC OVEIVIEW ..uuiiiuiiiieiitiinienieiniiesieniensseesnessessssessessessssessesssessssssssessssssses 117
DeVice SUPPOTt...couuiiiiiiiiiiiiiiiiiii s 117
DRC INPUL FAlE ... 117
DRC Output File........iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 117

[D2 GRS 7 117 QOO 118
DRC OPtionsS...uuiiiiiiiiitiiiiiiniieiiecntieciecniecieesseesssesssesssssesssseessssesssseessns 118
€ (Brror RePOrt) ..ovvveeiiiiiiiii 118

S0 (Output file)....oovvveeiiiiiiii s 118

-5 (Summary Report)........ooooiiiiiiiiiiiiii 118

-V (Verbose Report)uuuiiiiiiiiiiiiiiiiiiiiiiiiiiii 118

-z (Report Incomplete Programming)ceuuuieiiiiiiiiiiiiiiiiiie, 119
DRC CRECKS ..ccivuiiiniiiiniiniiiiiieiniitineeseessseessatsssseesssessssesssssesssssessssessssssssnee 119
DRC Errors and Warningsccceueevveeriucinneennuecnneesnnueenneessneesneessneesseesnee 119

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 9 Place and ROULE (PAR) ...ttt e e e e e e 121
PAR OVEIVIEW cuuciiiiuriiiiiiniiiiinietiiiteesiiineesissteesssmsessssssesssssssssssssssssssssssesssssnes 121
PAR FIOW ..ttt ettt e e e e e ee e 122

PAR Device SUPPOTEccoiiiiiiiiiiiiiiiiiiiiici s 122

PAR INPUL FIleS. .. .o 122

PAR Output FIles.......c.ouviiiiiiiiiiiiiiiii e, 123
PAR PIOCESS .uuuueieieiitiiiiitiieeitiiecnntieessineesssansesssanasssssasesssassesssssssssssssssssssans 123
PIaCING ... 123
ROULINE ..o 123
Timing Driven PAR ... 123
PAR SYNtAX cuutiiiiiiiiiiiniiiniiiiienircntienir e csseesssssssssssssessssessssesnsns 124
Detailed Listing of Options.........couevueeiiniiiiiniiniininiinicienicnenncienncnennenee 125
-activity_file (Activity File) ... 126
-clock_regions (Generate Clock Region Report)...................ooooon 126

-f (Execute Commands File).........cooiiiiiiiiiiiiiiiiiiiiie e 126
-intstyle (Integration Style)cccocviiiiiiiiii 126
filter (FIlter FAle)...o.un i 126

-k (Re-Entrant Routing)ooovviiiiiiiiiiiiiii, 127

-mt (Multi-Threading)cccoooiiiiiiiiiiiiii 127
-nopad (NO Pad)eeeeiiiiiiiiiii 127

-ntd (Non Timing DIIVEN)uuuiiiiiiiiiiiiiiiiiiiiiiii, 127

-ol (Overall Effort Level).........ooouiiiiiiiiiiiiii e, 128

-P (NO Placement)oeiiiiiiiiiiiiiiii s 128

-pl (Placer Effort Level) ... 128
-power (Power Aware PAR).........cccooiiiiiiiiiiiiiii 129

T (NOROULING) .o 129

-1l (Router Effort LeVEl)iiiiiiii i 129
-smartguide (SmartGuide).............uuvviiiiiiiiiiii 130

-t (Placer Cost Table)ccuuuuniiiiiiiiee e 130

-Ub (Use BONAEd I/O8) ...cevuuniiiiiiiieeeeiiie e 131

-w (Overwrite Existing Files)cccccociiiiii 131

-X (Performance Evaluation Mode)c.coiiiuiiiiiiiiiiiiiiiiiiii e 131

-Xe (Extra Effort Level)iiiiiiii i 131
PAR REPOIES «.eeenrriiitieeitiitiectiecnieccteccteccte st saeesteesssneesaassssaessasesssnesnnns 132
Place and Route (PAR) Report..........cuuviiiiiiiiiiiiiii 132
Guide Report file (GRF).......ccoooiiiiiiiiii e, 138

D 010 4 {5 TR 140
ReportGen SyNtax........oooooiiiiiiiiiiiiiiii s 140
ReportGen Input Files ... 140
ReportGen Output Files ..., 141
ReportGen Options.........ccooiiiiiiiiiiiiiiiiiiii s 141
Halting PAR....coouiiiiiiiiiiiiiiiniinieiirccnecninecnscssesesnecssssesssesssssessssssssssesssne 142
Chapter 10 SmartXplorer ... 143
What's NeW In 12,1 ..uuiiiiiiiiiiiiiiiiiiiiieinineeesiieeenineesssneesssseessssseessssssesssssne 143
SMArtXplorer OVeIVIEWcovviivruiiiniiiiiiiniieinniciniecseessaeessaessseesssaesssseesssee 143
KeY BENEFItS ... 144
SmartXplorer Device SUPPOTt.........uuuiiiiiiiiiiiiiiiiii 145
Using SmMartXplorer ...ttt 145
.. 146
Running Implementation Strategies Onlycccoooiiiiiiiiiii, 146
Using the Built-In Strategieseuiiiiiiiiiii 146

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com

& XILINXe

Using XST with SmartXplorer..........ccoooiiiiiiiiiiiiiiii e, 149
Using Synplify with SmartXplorer ... 150
Selecting the Best Strategyccceevevienieniiiniinieniiicctectecrceeeen, 150
Running Multiple Strategies in Parallel..........cc.cccoevevvueinneiniueinieennnnccnneennnne 151
Setting up the Xilinx Environmentccccccoviiiiiii 152
ReSUltS StOTAZE ... vt 152

Host List File ..., 152
Custom Strate@iesccocevvvueivneiriuiiiiiiniiiinecnie s saae 154
New Custom Strategy File Format ..., 154

Old Custom Strategy File Format ... 155
SmartXplorer Command Line SyntaX.......cccoceevueveniineisiiniisieniiniennenneneennenns 156
General Command Line Syntaxcccvviiiiiii, 156
SmartXplorer Files and Directories.................ovviiiiiiiiiii, 156
SMartXplorer OPtiONSuuueiiiiiiiiiiiiiiiiiieiiiie e, 157
SmartXplorer REPOItScoouievieiiiiniiiiienieciicieniececeeteete e 165
smartxplorer.html...........cooooooi 165
SNATtXPLOTETAXE ..vvviiiiiiiiiiiiiii 167
DeSIGNEFIle_SX.JOG ... 168
Setting Up SmartXplorer to Run on SSHcovviiiniiniiniiinienienienneennn. 168
Chapter 11 XPOWET (XPWR)......uuiiiiiiiiiiiiiiiiiee ettt 171
XPOWET OVEIVIEWuvrirriiiiiiiientiinienieenieesteeteesseesssessesssessssssssesssessssssssessasssans 171
XPower Device SUPPOTtuuuuiiiiiiiiiiiiiiiiiiiiii 171

Files Used by XPOWeT.........ccooiiiiiimiiiiiiiiiiiiiiiii s 172
XPOWeET SYNEAX ..coviiiiniiiiiiniiiiiiiiiiiniiiiiiieecinecsis e cesssssessssssesssssssssssnns 172
XPower Command Line OPtioNnsScccccevveeriuiinieinniueeninecnnnecnnecsnneesseeesnneenes 173
S (LAME) e 173

-Is (List Supported DevViCes)uuuuuueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiceee 173

-0 (Rename Power Report)...........cceeeiiiiiiiiiiiiiiiiii, 173

-5 (Specify SAIF or VCD file).......cuuuiiiiiiiiiiiiiiiiiiii e, 173

AL (TCLSEIIPE) e 174

-V (Verbose Report)uuuiiiiiiiiiiiiiiiiiiiiiiiiiiii 174

-wx (Write XML Settings File)cccoooiiiiiiiiiiii, 174

-x (Specify XML Settings File)cuuuiiiiiiiiiiiiii 174
XPower Command Line Examples.........cccooeeiivieniiniiniiniensiiniennennenncnennnennees 174
USING XPOWET c..uveiinriiiriiiiiiinieiniitinieeninecsaeesssaeessseessssesssseessssessssesssssessssssssnne 175
SATF or VCD Data ENtrycoovviiiiiiiiiiiiiiiiii, 175
Other Methods of Data ENtry.............eeeiiiiiiiiii, 175
POWET REPOIES .uueeeiriieiiecteectecteectectteee et saaeenee 176
Standard Reports ... 176
Detailed RePOTtuueiiiiiiiiiiiiiiiiii s 177
Chapter 12 PINZ2UCF ... 179
i DDA B @ S0 1743 o 74 T 179
PIN2UCEF Design FIOWccooiiiiiiiiiiiiiiiiiiii e, 179
PIN2UCEF Device SUPPOTt......cccuviiiiiiiiiiiiiiiiiiiiiii s 180
PIN2UCE File TYPES....uvviiiiiiiiiiiiiiiiiiee e 180
PIN2UCF Input Filecoviiiiiiiiiiiiiiiiiiiiiiic 180
PIN2UCFE Output Filesouuuiiiiiiiiiiiiiiiiiiiiiiiiiiiii 180

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

PIN2UCE SYNEAX ceeoeriiiinriiiiiiiiieenitennieenieenntesnteeesnessteesssseesssssssssesssssessssssnsns 183
PIN2UCF Command Line OPtionsccuceveeriuienseennnnecnneennnnecnneesnneesneesnnne 183
-0 (Output File Name)ooooiiiiiiiiiiiiiiiiiiii, 183

-1 (Write to a Report File)uuiiiiiiiiiiiiiiiiii 183
Chapter 13 TRAGCEottt e e 185
TRACE OVeIVIEW....cuuiiiiiiiiiiiiiiiiniieiitiniieinneesneesssessseessssessssesssssssssssssssssns 185
TRACE flow with primary input and output files.......................... 185
TRACE Device SUPPOTt......uuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiii 186
TRACE Input Files ..o, 186
TRACE Output FIlesouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii, 186
TRACE SYNtaX...eciniiriinienrieiniiinienienieenieenieeiesssesssessessssssssessessssssssssssessasssans 186
TRACE OPLIONS ...ccevuiiiiniiiiiiininieiiiiciniecnanesiecssnessseesssesssseesssessssssssssessssesses 187
-2 (Advanced ANALYSIS)uuuuuruiiiiiiiiiiiiiiiieiiieieee e 187

-e (Generate an Error Report)........ccooooiiiiiiiiii 187

-f (Execute Commands File)...........coouiiiiiiiiiiiiiiiii e 188
-fastpaths (Report Fastest Paths)coeeei 188
-intstyle (Integration Style)ccccoviiiiiiiiiii 188
filter (FIlter FAle)...c.un i 188

-1 (Limit Timing REPOIL)uuuumimiiiiiiiiiiiiiiiiiiiiiiiiiiiceeeeee e 188

-n (Report Paths Per ENdpoint).............cuoiiiiiiiiii . 189
-nodatasheet (NO Data Sheet).........cccuuuriiiiiiiiiiiiiiiine e 189

-0 (Output Timing Report File Name)............ccccoo . 189

-s (Change Speed)oooiiiiiiiiii 189
-stamp (Generates STAMP timing model files)............................ 190

-tsi (Generate a Timing Specification Interaction Report)c.ooeeinn. 190

-u (Report Uncovered Paths).............eeviiiiiiiiiii, 190

-v (Generate a Verbose Report)cocooiiiiiiiiiiiiii, 191

-xml (XML Output File Name)couuuiiiiiiii, 191
TRACE Command Line EXamplesc..ooueeiennieinieniensnennienieniennneennnennenne 191
TRACE RePOILS ..ccovvuuriiiinniiiiiiiiiiniiniiininteeciieecinnnecssnnecsssssessssssessssssesssssse 192
Timing Verification with TRACE............ccccc e, 192
Reporting With TRACEouiiiiiiiiiiiiiiiiiiiiii 194

Data Sheet Reportoooiiiiiiiiii 196
Guaranteed Setup and Hold Reporting............ccccceoeiiiiiiiiii . 198
Summary Reportccoooviiiiiiiiiiii s 199
Error RePOTt ...uuuviiiiiiiiiiiiiiiii 202
Verbose RePortcooiiiiiiiiiiiiiiiii 205
OFFSET CONStraints........coveveeenieiniiniinieiiiiiiniennecienensensennesneensesesne 208
OFFSET IN Constraint Examples ..., 208
OFFSET OUT Constraint Examples..............c . 213
PERIOD CONStraints.......ccoueeiieiniieinniinniiiniiiieeiiecieeiecneenieemsesseens 215
PERIOD HEAAET ...ttt e e e e e e e e eeeeeeeeeeeaeaeaeas 216
PERIOD Path......ociiiiiiiiiiiiiiiiiii e e e e e e 216
PERIOD Path Details...........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieccceeccececee, 217
PERIOD Constraint with PHASEoouiiiiiiiiiiieeeeeee, 218
PERIOD Path with Phase..............ccoeiiiiiiiiiiiiiiiii e, 218
Minimum Period Statistics.uuuuuueeiiiiiiiiiiiiiii 219
Halting TRACE ...ttt cnnsscssecssssssssesssssessssssssssssssns 219
Chapter 14 SPEEAPIINToiiiiiiiiiie et e e e e e 221
Speedprint OVervieW ...t ess s 221

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com

& XILINXe

Speedprint FIOWcooiiiiiiiiiiiiii 221
Speedprint Device SUPPOTL........uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiieee 221
Speedprint File TyPes..........cooooiiiiiiiiiiiii 221
Speedprint Command Line SyntaX........ccoccevvevveniiinniiineiniennieinecniennenneenen. 225
Speedprint Command Line Options.........ccoeeeeveiiiniiiiniinnenicniennensennennens 225
-intstyle (Integration Style)cccccocviiiiiiiiiii 225
Speedprint -min (Display Minimum Speed Data)..............ccvvveiiiiniiiin. 225
-5 (SPeed Grade)cuuiiiiiiiiiiiiiiiee e 226
-StePPING (SLEPPING)...vvvvrrriiiiiiiiiiiiiiiiiii 226
-t (Specify Temperature)...........c.uuueiiiiiiiiiiiiiiiii s 226
-V (SPECIY VOIEAZE) ...ttt 226
(04 pT=T o (=T S T =1 1 (=T o I 227
BitGen OVeIVIEWccueiiiiiiitiniitiniitecteteetesteetesee et nesaesaesaesaessesnessees 227
Design FLOW ... 227
BitGen Device SUPPOTt........uuuiiiiiiiiiiiiiiiiiiiiiiiiii 228
BitGen Input Files ..., 228
BitGen Output Filesouuiiiiiiiiiiiiiiiiiiiiiiiii 228
BitGen Command Line SyntaX.......cceeverveiniinsiinnninniiniennennnniniennenenene. 229
BitGen Command Line Optionsceovueevviiinueinnieinniinneennnecnnnecnneenneeenn. 230
-b (Create Rawbits File)viiiiiiiiiiiiiiiii e 230
-bd (Update Block Rams)........cccouuuiiiiiiiiiiiiiiiii e, 231
-d (Do NOt RUN DRC).cc.uiiiiiiiii et 231
-f (Execute Commands File)...........ceeiiiiiiiiiiiiiiiii e, 231
-g (Set Configuration)...........uuueiuiiiiiiiiiiiiiiiii 231
-intstyle (Integration Style)uuueeiiiiiiiiiiiii 250
G INOBIT FALE) et 250
-1 (Create a Logic Allocation File) ..., 250
-m (Generate a Mask File)......c..ooiiiiiiiiiiiiiii e 250
-1 (Create a Partial Bit File)...........ouiiiiiiiiiiiiiiii e, 251
-w (Overwrite Existing Output File)ccccooooooi. 251
Chapter 16 BSDLANNOcciiiiiiiiie ettt e e e 253
BSDLANNO OVEIVIEW ...ccoiuiiiiiiiiiiiintieniieeniieiieennneesieesssseessssessssesssssesssssessns 253
BitGen Device SUPPOTt.......ccooiiiiiiiiiiiiiiiiiiiiii s 254
INPUE FIIES . 254
Output Files ... 254
BSDLANnno Command Line SyntaXxccceceveenieneenieneenienieenieneeneneesennennne 254
BSDLANnno Command Line Options.........cciieviiiinicnienicnienicnienicnennennee 255
-intstyle (Integration Style)ccooiii 255
BSDLAnNNO -s (Specify BSDL file) ..., 255
BSDLANNO File CoMPOSItionc.ccoveeiiniieiintiiieniinienictenteteceesteeeesneenenees 256
BSDLAnNnNo Entity Declarationeeeeiiii 256
BSDLAnNNo Generic Parameter.............oooooiiiiiiiiiiiinie s 256
BSDLAnNno Logical Port Descriptionuceeiiiiiiiiiiiiiiii, 256
Package PIN-MapPinguuvuuiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiceceeeeeee e 257
BSDLAnNNO USE Statementccoeiiiiiiiiiiiii 257
BSDLAnNnNo Scan Port Identification................oooeiiiiiiii e, 258
BSDLANNO TAP Description..........cceeiiiiiiiiiiiiiiiiiiiiiii e 258
BSDLAnNno Boundary Register Descriptioncccccccoiiiiiiiiin. 258
Boundary Scan Description Language (BSDL) File Modifications for
Single-Ended PINSouuiiiiiiiiiiiiiiiiiiiiiiiiiiii 259

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Boundary Scan Description Language (BSDL) File Modifications for Differential

PINS .o 260
BSDLAnno Modifications to the DESIGN_WARNING Section...........c.ccceevvneennn. 261
BSDLANno Header Commentscooooiiiiiiiiiiiiniiiiiiii e, 261

Boundary Scan Behavior in Xilinx Devices.........ccovvueriueirseeciuecnieennnecnsneennnne 261
(04 aT=T o (=T A (@ 11V [=1 o 1 263
PROMGEN OVEIVIEW....ueiiiuriiiriiiiniiinnieiiieesniieiiieenssiessseesssesssesssssesssssssssssssns 263
PROMGen Device SUPPOTt..........uuuiiiiiiiiiiiiiiiiiii e 263
PROMGen Input Files ..., 264
PROMGen Output Filesuuiiiiiiiiiiiiiiiiiiiiiiiiii, 264
PROMGEN SYNtaX...uuiiiiiiiiiiiiniiiiniiiieiniitecnniiecninieisnieecssseesssssessssssesssssns 264
PROMGEN OPLtioNS....ccveiruiiriinniiniriniiinienieiienienneessessesnsesssessessssesssessesses 265
-b (Disable Bit SWapping)c.cuuviiiiiiiiiiiiiiiii s 265

-bd (Specify Data File)............uuuiiiiiiiiiiiiiiiiiiiiiiii 265

-bm (Specify BMM File)............uiiiiiiiiiiiiiiiiiiiiii, 266
-bpi_dc (Serial or Parallel Daisy Chaining)............cccoooooiiiiiiiiiiin. 266

“C (CECKSUIM). ..ttt e et e e e eaa e e e 266
-config_mode (Configuration Mode) ... 266

-d (Load DOWNWATA) .eeuuniiiiiiiiieiiie ettt e e 266
-data_file (Add Data Files)........cuuumuiiiiiiiiiiiiiiiiii e 267
-data_width (Specify PROM Data Width)oooo 267

-f (Execute Commands File).........ooeiiiiiiiiiiiiiiiiiiiiiie e 267

-1 (Select Initial Version).........coouuuiiiiiiiiiiiiiiiiiiiiii e 268
-intstyle (Integration Style)cccccoiiiiiiiiii 268

-1 (Disable Length COUNt)uuiiiiiiiiiiiiiiiiiiiiiieiecee e, 268

ST (A BIT FILES) -ttt e e e e e e e e e e e e e e e e e e 268

-0 (Output File Name)ccooooiiiiiiiiiiiiiii e, 269

-p (PROM FOrmat)coooiiiiiiiiiiiiiiiiiii 269

- (Load PROM File)....oiiiiiiiiiiiiii e 269

=S (PROM SIZE) ..ttt e 269

-spi (Disable Bit SWapPINg)..........uuuuuuueeiemeiiiiiiiiiiiiiiiiiiic 270

-t (Template File).......cooiiiiiiiiiiiiiiiiiiiiiiiiiiii 270

U (Load Upward)eeeiiiiiiiiiiii 270

SVET (VBISION) .. ettt ettt ettt e e et e e et e e e 270

-w (Overwrite Existing Output File)cccccooooo. 270

-x (Specify XilinX PROM).......uuuiiiiiiiiiiiiiiiiiiiiiiiiiii, 271

-Z (Enable COMPIESSION)......uuuuuiuiiiiiiiiiiiiiiiiiieieeieieiee e 271

Bit Swapping in PROM Filesccovviiivuiinniiiiiiinniinniiinniiiiecnnnennnecnnnneenne 271
PROMGeEN EXaMPIES ...uueivueiiiriiiiniiiiiiininiiiniecnniccnecsnnecsnecsssnecsseesssseessseesnee 271
Chapter 18 IBISWIITETooeiiiiiiiiie et e e e e e 273
IBISWIIter OVeIVIEWcouiivuiiiiiiiiitienienieiienientecrennesssesnesnessesssessnessnes 273
IBISWIILET FLOW ..., 274
IBISWriter Device SUPPOIt........uuiiiiiiiiiiiiiiiiiiiiiiiii 274
IBISWriter Input Files............ooiiiiiii, 274
IBISWriter Outpuit Filesouiuiiiiiiiiiiiiiiiiiii 274
IBISWIIter SYNtaX c...ccevvuiiiiiiiniiiiiiiiiniiinieiniieniecninecnecnssscsseesssessssesssseessns 274
IBISWIIter OPtionsccueeivuiiiiueiniuiinniiiiieiniiennieeneesnnecsseecsseessssessssesssssessnne 275
-allmodels (Include all available buffer models for this architecture)................... 275

-g (Set Reference Voltage) ..o 275
-intstyle (Integration Style)ccoooiiiiiiiiiiiii 276

-ml (Multilingual SUPPOTL)ovviiiiiiiiiiiiiiiiiiiii 276

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com

11

& XILINXe

-pin (Generate Detailed Per-Pin Package Parasitics)..............cccceeeeiiiiiiiiiiiiiiinnnnn. 276
-truncate (Specify Maximum Length for Signal Names in Output File) 276
-vecaux (Specify VCCAUX Voltage Level) ... 277
Chapter 19 CPLDFIt.....coi i 279
CPLDFit OVeIVI@W ...uuoitiiiiiriiieieeteenienieniesneestesteesnesae s e ssnessaessassssssssasssens 279
CPLDFit Design FIOWcccoiiiiiiiiiiiiiiiiiiiiii s 279
CPLDFit Device SUPPOTtcoooviiiiiiiiiiiiiiiiiiii s 279
CPLDFit Input Files ..o 279
CPLDFit Output Files............coooiiiiiiiiiiiiiii e, 280
CPLDFit SYNtaX....ccoveirueirienieniienniienienieneeieniesieesiessessssesssesssessssesssessaessans 280
CPLDFit OPtiOnsS....cuueiieiniiiniinieiiienienieiieeieniesseessessessseesnesssessssesssesssessans 281
-blkfanin (Specify Maximum Fanin for Function Blocks)............................ 281
-exhaust (Enable Exhaustive Fitting)cccccccoiii. 282
-ignoredatagate (Ignore DATA_GATE Attributes)ooeiiinn 282
-ignoretspec (Ignore Timing Specifications)cc..ccccoooooi 282

-init (Set Power Up Value)ooeiiiiiiiiiiiiiiii, 282
-inputs (Number of Inputs to Use During Optimization)coceeiin. 282
-iostd (Specify I/O Standard)............ccccvvvviiiiiiii 283
-keepio (Prevent Optimization of Unused Inputs)ccccccccn. 283

-loc (Keep Specified Location Constraints)cccccceviiii.. 283
-localfbk (Use Local Feedback)........ccuuuuviiiiiiiiiiiiiiiiiiiiiiiiieeceiiies e 283

-log (Specify Log File)uumiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeee 284
-nofbnand (Disable Use of Foldback NANDS)........ccccoceiiiiiiiiiiiinniieiiiiiiiiiieee 284
-nogclkopt (Disable Global Clock Optimization)cccccoon. 284
-nogsropt (Disable Global Set/Reset Optimization).................cccccooon. 284
-nogtsopt (Disable Global Output-Enable Optimization)...........................oo. 284
-noisp (Turn Off Reserving ISP Pin)............cccccci. 284
-nomlopt (Disable Multi-level Logic Optimization)cccccccccnn. 285
-nouim (Disable FASTConnect/UIM Optimization)ccccccciniin. 285
-ofmt (Specify Output Format).........cccccvvvviiiiiii 285
-optimize (Optimize Logic for Density or Speed)..............ccccccccccn. 285

-p (Part NUMDET) ..., 285
-pinfbk (Use Pin Feedback)............cccooiiiiiiiiiiiii e, 286
-power (Set POWer Mode)uuuuiiiiiiiiiiiiiiiiiiiiiiiiii 286
-pterms (Number of Pterms to Use During Optimization)....................cccoooo. 286
-Slew (Set SIEW Rate)couuniiiiiiiiii e 286
-terminate (Set to Termination Mode)uoviiiiiiiiiiiiiiiiiieeiiiie e 286
-unused (Set Termination Mode of Unused [/OS).........cc.uvviiiiiiiiiiiiiiiiniiiiiinnees 287
-wysiwyg (Do Not Perform Optimization)...........ccccccoooooi. 287

(O pT=T o (=] a2 O N 1] | R 289
IS 0% B0 A7 o) 289
TSIM Device SUPPOTt....cccooiiiiiiiiiiiiiiiiii s 289
TSIM Input Filescccvviiiiiiiiiiii 289
TSIM Output Files ..., 289
TSIM SYNEAX...uiiiiiiieiiiiitiiiienniticreene et ae s sae e e saseesaesssanesssasssssnees 289
(04 pT=T o (=] a2 I AN =1 o o 11 1 RSP 291
2N 25 0 F=a 8 T A7) o 74 1 291
TAEngine Design FIOW...........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiii, 291
TAEngine Device SUPPOItuiiiiiiiiiiiiiiiiiiiiii 291
TAEngine Input File...........cooooii 291
TAEngine Output File ... 292

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

TAENGINE SYNtaX....coiiiiieriiiiiinienieniectecnteciececresneese et sse s ssaessns 292
TAENGIine OPtions........cuieiieiiiiiniieiniiiniieiiieniecseennecsssesseesssessssesssseeas 292
-detail (Detail REPOIt).........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiii 292
-iopath (Trace Paths) ..., 292

-1 (Specify Output Filename)..............eeueuiiiiiiiiiiiiiii, 292
Chapter 22 HPIEPGt e e 293
HPIep6 OVeIVIeWcucciiiieiiietiitentietecteteeteectenteeteee et e sse s ssesaessesnessees 293
Hprep6 Design FIOW ..., 293
Hprep6 Device SUPPOTt........oooiiiiiiiiiiiiiiiiiiiiii 293
HPTep6 SYNtaX........ceeiiiiiiiiiiiiiiiiii 293
Hprep6 Input Files...........ooooiiiiiiiiiiii 294
Hprep6 Output FIlesoouuiiiiiiiiiiiiiiiiiiiiiiiiiiiii, 294
HPTIep6 OPtionsS....cccueivuiiiiuiiiiiiiiiiinieiniiecneenieeneessseessseesssecssseessseessssesssne 294
-autosig (Automatically Generate Signature)......................ooooooo 294
-intstyle (Integration Style)eueeiiiiiiiiiiiii 294

-n (Specify Signature Value for Readback)c..occooo 295
-nopullup (Disable PUllups)............uuviiiiiiiiiiiii 295

=S (Produce ISC FAle) ... oiiiiii et 295

-tmv (Specify Test Vector File)...........ccccovviiiiiii 295
Chapter 23 XFLOWooiiiii e 297
XFLOW OVEIVI@Wuuririieiiriiiintienienteenieentesteesssssssessessssssssesssessssssssssssessasssans 297
XFLOW DeSigN FIOWouuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeceeeeee e 298
XFLOW Device SUPPOIt......uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e, 298
XEFLOW Input Files ..., 298
XFLOW Output Filesouuiiiiiiiiiiiiiiiiiiiiiiiiiiiii, 299
XFLOW SYNtaX ..cciiiiiiiiiiiiiiiiiniiiiiiniiiiiiiieciieeiniecemmieeemmmseemmssesmmmsessnse 302
XFLOW FIOW TYPES ..ceerureriiitrintienienteininenientesieessnessessessssesssesssessssssssesssessnns 302
-config (Create a BIT File for FPGAS).......ccuuiiiiiiiiiiiiiiiiiiiiiiii, 303

-ecn (Create a File for Equivalence Checking)..................cccoiiin, 303

~fit (Fit @ CPLD) coiiiiiiiiiiiiiiiiiii e 303
-fsim (Create a File for Functional Simulation)ccceeveiiiiiiniiiiiiiinieniiineees 304
-implement (Implement an FPGA) ..., 305

-sta (Create a File for Static Timing Analysis)..........cccccccooooi 305
SSYIEN Lo 305
-tsim (Create a File for Timing Simulation)coooo. 307
FIOW Fil@S..ccuiiiniiiiiiiiiiecticttctecttctectectecrcte et sae e saesans 307
XilNX FIOW FALES ..., 308
Flow File FOrmMat........oviiiiiiiiiiiiiiie e 308

User Command BlOcKS...........uuiiiiiiiiiiiiiiiiiiii, 310
XFLOW Option Files.......cuiiiiiniiiiiniiieniiieniiieniiienicieciesecsesessessesnessnes 310
XFLOW Option File Format.............cuuuiiiiiiiiiiii, 310
XFLOW OPLiONS...cciiuiiiiriiiniiiniiinuieniieinsiesnneessessseesssessssessssessssssssssessssssses 311
-ed (Copy Files to Export Directory)..........coooouiiiiiiiiiiiiiiiiiiie, 311

-f (Execute Commands File).........coooiiiiiiiiiiiiiiiiiiiiiiie e 311

-g (Specify a Global Variable).................ccooooii 312

-log (Specify LOg File)uuueiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 312
-norun (Creates a Script File Only) ... 312

-0 (Change Output File Name)............c.coocoiii 313

-p (Part Number)ooooiiiiiii 313

-rd (Copy Report Files)..........uuuiiiiiiiiiiiiiiiiiiiiiiiiii 314

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com

& XILINXe

-wd (Specify a Working Directory)ccccviiiiiiiiiiiiiiiiii, 314
Running XFLOW.......ccuiiiniiiiiiiniiiniiniicniieniecnnnesnnecnnsessmessssessmssssssessnse 315
Using XFLOW Flow Types in Combinationcccccccccoo. 315
Running Smart FIOW ..., 315
Using the SCR, BAT, 0r TCL Fileuuuiiiiiiiiiiiiiiiii, 315
Using the XIL_XFLOW_PATH Environment Variable................................. 316
Chapter 24 NGCBUIIcoooiiiie e 317
NGCBUild OVEIVIEWcciuiinuiiiiiiiiintiinieiiriienienieeresnesneenessessssesssesssessnes 317
NGCBuild Device SUPPOTtuuuviiiiiiiiiiiiiiiiiiiiiiiii, 317
Using NGCBuild in FIows ... 318
NGCBuild Input File (<infile[.@Xt]>)......cuuueiiiiiiiiiiiii, 318
NGCBuild Output File <outfile[.ngC]> ... 318
Validating the NGC File in NGCBuild 318
NGCBuild Messages and Reports ..., 318
NGCBUild SYNtaxcooueenienienieiiiinienieniecienienecree e essaessns 318
NGCBUild OPtionsccueiivuiiiuiiiiiiiiiiinintiniecniecneeciecseessnecssseessseessssesenne 319
-aul (Allow Unmatched LOCS).....iiiiiiiiiiiiiiiieeeiiiie et 319

-dd (Destination DireCtory)...........uuuuuiiiiiiiiiiiiiiiiiii, 319

-f (Execute Commands File)........ccooiiiiiiiiiiiiiiiiiiiie e 320

-1 (Ignore UCE File)ouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 320
-insert_keep_hierarchy (Insert KEEP_HIERARCHY constraint).......................... 320
-intstyle (Integration Style)cccoooiiiiiiiiiiiiii 320
SfAlter (FALEET Fle)..oouuuniiiiiii et 321

-nt (Netlist Translation Type) ..o 321

-p (Part Number)oooiiiiiiii 321
—quiet (QUEEE) ..ooviiiiiiii s 321

-1 (Ignore LOC Constraints)cccceeiiiiiiiiniiiiin 321

-sd (Search Specified DIireCtOry)uuueeeeeieiiiiiiiiiiiiiiiiiiiiiiiii, 322

-uc (User Constraints File)uvviiiiiiiiiiiiiiiiieiiiiie e 322

-ur (Read User Rules File)......ccouuuiiiiiiiiiiiiiiiiiieciiiiie e 322
-verbose (Report All MESSAZES)uuuuuueuemeiiiiiiiiiiiiiiiiiiiiiiiiieceeeeeceeee e, 323
Chapter 25 COomMPXID ..uuii e 325
ComPpXLib OVEIVIEW.....uviiiiitiiitiiitiiitiniiiircircinne s s ssssesanes 325
Design FIOWoooiiiiiiiiiiiiiiiiiiii s 326
Compxlib Device SUPPOTLuuuiiiiiiiiiiiiiiiiiiiiiiiiii 326
CompXLib SYNtaX.....coeiieiiiiiniiiieniciecect s 326
CompXIib OPtioNS.....ccovuiiiiiiiiiiiiiiiiiiiiieiereer e ssssesssseesane 327
-arch (Device Family)uuuiiiiiiiiiiiiiiiiiiiiiiii 327

-cfg (Create Configuration File).............ccccoiiiiii e, 328

-dir (OUtput DITeCtOTY).....uuuiiiiiiiiiiiiiiiiiiiiiiiieeeei e 328

-€ (Existing Directory)ccocvuuiiiiiiiiiiiiiiiiiiiii 329
-exclude_deprecated (Exclude Deprecated EDK Libraries)...............cccccoviiiiinnnn. 329
-exclude_sublib (Exclude EDK Sub-Libraries)cccouuiiiiiiiiiniiiiiiiiniiiiiineees 329

-f (Execute Commands File)..........ooooiimiiiiiiiiiiiiiiii e 329

-info (Print Precompiled Library INfO) ..., 329

] (LANGUAZE) it 330

-lib (Specify Name of Library to Compile)cccoocoiiiii 330

Slog (LOG File) c.ovviiiiiiiiiiii i 330

-p (Simulator Path).............ooiiiiiiiiiiiiiiiiiii 331

-5 (Target SIMUIAtOr).........uuuiiiiiiiiiiiiiiiii 331
-source_lib (Source Libraries).......c..oceuuuiiiiiiiiiiiiiiieiiis e 331
-verbose (List Detailed MeSSagES)uvvvviiiiiiiiiiiiiiiiiiiiiiiiiiii, 331

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

-w (Overwrite Compiled Library)ccccooiiiiiiiiiiiiiiiiiie, 332
Compxlib Command Line Examplescoueevvuiiriiinnuiinneeninecnneennnecnneennnne 332
Compiling Libraries as a System Administratorcccccccoon. 332
Compiling Libraries as a USer.............cccoociiiiiiiiiiiiiiiiice 332
Additional Compxlib Examplescccoiiiiiiiiiii, 333
Specifying Run Time Options........cucevveeriniiiniiniuiinnieinneennnecnnecnnneenneeen. 333
EXECUTE ...ttt ettt ettt e e e e e eeennenaeaes 333
EXTRACT_LIB_FROM_ARCH ...cotttiiiiiiiiieiiiiiiiiiiee et 333
LOCK_PRECOMPILED......ccccttttitiitiitaeeeeetttetiiiiis e e e ettt e e eeeeeeeennnniaens 334
LOG_CMD_TEMPLATEccotttiiiiiiiiieeee ettt ettt 334
HIER_OQUT_DIR ..ottt et ettt e ettt e e e e e e e e eeeeeeaaeaas 334
PRECOMPILED_INFO.....cciitititiiiiiiiiieee ettt 334
BACKUP_SETUP_FILESccootiiiiiiiiiiiee ettt 334
FAST_COMPILE......uuiiiitiee ettt ettt e e e e e e eeeeeaaaaas 334
ABORT_ON_ERRORiiiiiiiiiiiiiiiise ettt ettt eeeeeeeeaeiaaaas 335
ADD_COMPILATION_RESULTS_TO_LOGcouuuceiiieeeiiiiiiiiiiiiieee e 335
USE_OUTPUT _DIR_ENV ..ottt 335
OPTION.. ...ttt ettt e e e e ettt etet bbb e e e e e e e eeeeeeaenaaaas 335
Sample Configuration File (Windows Version)cccccevueeviueinsuecnnuccnsneennnne 335
Chapter 26 XWEeDTalKcoooiiiiiei eeas 341
XWeDbTalK OVEIVIEW ...ccccvueiiiinuiiiiiniiiiiineieninneeesineesssnneesssneessssseessssssessssne 341
XWeDbTalk SYNtaX ..cccoeereuiiireiniuiinnieiiiiinieiiieeneessieesnessneesssesssseesssessssesses 341
XWebTalk OPtionS......covueiiiiuiiniiniiniiiiiiiinieniecrcnessesse s esssssssessnes 342
FUSET (USET) 1ttt ettt 342
ANStAll (INSEALL) ..eeiieiiee ettt ettt e e e e eeeaa e 342

SINFO (INFOTMAION) «.vue ettt ettt 343
Appendix A ISE DeSign SUIte FIleS.......ccooiiiiiiiiii e 345
Appendix B EDIF2NGD and NGDBUIld ... 349
EDIF2NGD OVeIVIEW...uuuuiiiiinriiiiiiniiiiiineiininteeciinneesssmieesssmessssssessssssesssssse 349
EDIF2NGD DeSign FIOWuuuuiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeee e 349
EDIF2NGD Device SUPPOTIt.........ccuuuiiiiiiiiiiiiiiiiiiiiii e 350
EDIF2NGD SYItAX.....eiiiiiiiiiiiiiiiiiiii ittt 350
EDIF2NGD INPUt FIlESeeiiiiiiiiiiiiiiiiiiiieeeeieeeeeeeeeeeeeeeeeeeee e, 351
EDIF2NGD Output Files ... 351
EDIF2ZNGD OpPtions.......ccoouiiiiiiiniiiniiiiieiniieiiecnniecisennieemecsmieemsesmseess 351
-a (Add PADs to Top-Level Port Signals)coooiiiiiiiiiii 351

-aul (Allow Unmatched LOCS).....ccuuiiiiiiiiiiiiiieei e 352

-f (Execute Commands File)..........ocoiiiiiiiiiiiiiiiiiiiiiiie e 352
-intstyle (Integration Style)ccooiiii 352

-1 (Libraries t0 SEATCR)cc.uuiiiuiiiiie e 352

-p (Part NUMDET) ..o 353

-1 (Ignore LOC Constraints)ccoeeviiiiiiiiiiiiiiii e, 353
NGDBUIL ...vveiiiiiiiiiiieiiiiittiieeinieesssstesssssasesssssssesssssasesssssssssssssssasssssane 353
Converting a Netlist to an NGD File............cccccoooiiiiii, 354

Bus MatChing ... 355
Netlist Launcher (INetliSter)uiiiiiiiiiiiiiiiiie e 356
Netlist Launcher Rules Filesccooiiiiiiiiiiiiiiiiin e 357
NGDBuild File Names and Locations..........cc.uuuuuieiiriiiiiiiiiiiiiiiiinee e 362

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com

& XILINXe

AppPeNdiX C TClI REFEIENCE ... 363
B Ru 0 73 s T OSSN 363
Tel Device SUPPOTt.......uuviiiiiiiiii 363
The Xilinx Tel Shell ..., 363
Accessing Help for Xilinx Tcl Commands ... 364
Tcl Fundamentalsoeeieniieieniinieniiienicienicieniciesncesieieeeessessessessessees 364
XilINX NAMESPACE ...evvviiiiiiiiiiiiiiiiii s 365
Project and Process Properties..........uuuueeneenieniennieenienieniennienneneeenennnennees 365
Project Properties......ccoooiiiiiiiiiiiiiii s 366
Process Properties - Synthesize Processcccccccvviiiiiiiii. 366
Process Properties - Translate Process...............ccccooeeviiiiiiiiiiiiiii, 370
Process Properties - Map Processoooiiiiiiiiiiniiiiiiiiie, 372
Process Properties - Place and Route Processccccccceeiiii.. 374
Process Properties - Generate Programming File Processccccciien. 375
Process Properties - Generate Post-Place and Route Simulation Model
PrOCESS .uvviiiiiiiccci 379
Xilinx Tcl Commands for General Usecccovueeiiieniinienienienicnneneenennenee. 381
lib_vhdl (manage VHDL libraries)cccoouiiiiiiiiiiiiiiiiie, 381
process (run and manage Project PrOCESSES).......cuvwririiiiiiiiiiiiieieaaiaaiiiiaeaieneeeeannn. 384
project (create and manage projects).........cccceeiiiiiiiiiiii 387
xfile (Manage ISE Source Files)cccciiiiiiiiiiiini e, 393
Xilinx Tcl Commands for Advanced Scripting........occeceeveeveevuecrennensecnnennenn. 398
globals (manipulate Xilinx global data)..................cccoooo 398
collection (create and manage a collection)ccoooeiiiiiiiiiiiiii, 400
object (get object INfOrmMation)...............ueveeiiiiiiiiiii 408
search (search for matching design objects)........................ 412
Example Tcl SCriptsccveneiieniiieniiiectetectcectcectccecre et 413
Sample Standard Tcl SCIipts...........uvuueiiiiiiiiiiiiiii 414
Sample Tcl Script for General Usecooviiiiiii, 416
More Sample Xilinx Tcl SCripts........cccovviiiiiiiiiiiiiii, 416

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 1

Introduction

This chapter describes the command line programs for the ISE® Design Suite. This
guide was formerly known as the Development System Reference Guide, but has been
renamed to Command Line Tools User Guide. This chapter contains the following sections:

¢ Command Line Program Overview
¢ Command Line Syntax
¢ Command Line Options

* Invoking Command Line Programs

Command Line Program Overview

Xilinx® software command line programs allow you to implement and verify your
design. The following table lists the programs you can use for each step in the design
flow. For detailed information, see the Design Flow chapter.

Command Line Programs in the Design Flow

Design Flow Step Command Line Program

Design Implementation NGDBuild, MAP, PAR, SmartXplorer, BitGen
Timing-driven Placement and Routing, MAP

Re-synthesis, & Physical Synthesis . .
Optimizations Note MAP uses specified options to enable

timing-driven placement and routing
(-timing), and re-synthesis and physical
synthesis optimizations that can transform a
design to meet timing requirements.

Timing Simulation and Back Annotation NetGen
(Design Verification)
Static Timing Analysis TRACE
(Design Verification)

You can run these programs in the standard design flow or use special options to run the
programs for design preservation. Each command line program has multiple options,
which allow you to control how a program executes. For example, you can set options to
change output file names, to set a part number for your design, or to specify files to read
in when executing the program. You can also use options to create guide files and run
guide mode to maintain the performance of a previously implemented design.

Some of the command line programs described in this guide underlie many of the
Xilinx Graphical User Interfaces (GUIs). The GUIs can be used with the command
line programs or alone. For information on the GUISs, see the online Help provided
with each Xilinx tool.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 17

Chapter 1: Introduction £ XILINX:

Command Line Syntax

Command line syntax always begins with the command line program name. The
program name is followed by any options and then by file names. Use the following
rules when specifying command line options:

* Enter options in any order, preceded them with a dash (minus sign on the keyboard)
and separate them with spaces.

* Be consistent with upper case and lower case.

¢ When an option requires a parameter, separate the parameter from the option by
spaces or tabs. For example, the following shows the command line syntax for
running PAR with the effort level set to high:

— Correct: par -ol high
— Incorrect: par -olhigh

* When using options that can be specified multiple times, precede each parameter
with the option letter. In this example, the -1 option shows the list of libraries to
search:

— Correct: -1 xilinxun -1 synopsys
— Incorrect: -1 xilinxun synopsys
* Enter parameters that are bound to an option after the option.
— Correct: -F command_Tfile
— Incorrect: command_file -F

Use the following rules when specifying file names:

* Enter file names in the order specified in the chapter that describes the command
line program. In this example the correct order is program, input file, output file,
and then physical constraints file.

— Correct: par input.ncd output.ncd freq.pcfF
— Incorrect: par input.ncd freq.pcf output.ncd

e Use lower case for all file extensions (for example, .ncd).

Command Line Options
The following options are common to many of the command line programs provided
with the ISE® Design Suite.
e -f (Execute Commands File)

-h (Help)

-intstyle (Integration Style)

-p (Part Number)

-f (Execute Commands File)

With any Xilinx® command line program for use with FPGA designs, you can store
command line program options and file names in a command file. You can then execute
the arguments by entering the program name with the - ¥ option followed by the name
of the command file. This is useful if you frequently execute the same arguments each
time you execute a program or if the command line command becomes too long.

Syntax

-f command_Tfile

Command Line Tools User Guide
18 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 1: Introduction

You can use the file in the following ways:

¢ To supply all of the command options and file names for the program, as in the
following example:

par -T command_file

command_file is the name of the file that contains the command options and file
names.

e To insert certain command options and file names within the command line, as in
the following example:

par -T placeoptions —F routeoptions design_1i .ncd design_o .ncd
— placeoptions is the name of a file containing placement command parameters.
— routeoptions is the name of a file containing routing command parameters.

You create the command file in ASCII format. Use the following rules when creating
the command file:

* Separate program options and file names with spaces.
* Precede comments with the pound sign (#).

* Put new lines or tabs anywhere white space is allowed on the Linux or DOS
command line.

¢ DPut all arguments on the same line, one argument per line, or a combination of these.

¢ All carriage returns and other non-printable characters are treated as spaces and
ignored.

* No line length limitation exists within the file.

Example
Following is an example of a command file:

#command line options for par for design mine.ncd
-w

ol 5

/home/yourname/designs/xilinx/mine.ncd
#directory for output designs
/home/yourname/designs/xilinx/output._dir

#use timing constraints file
/home/yourname/designs/xilinx/mine.pcf

-h (Help)

When you enter the program name followed by this option, you will get a message
listing all options for the program and their parameters, as well as the file types used by
the program. The message also explains each of the options.

Syntax
-h
-help

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 19

Chapter 1: Introduction £ XILINX:

Symbol Description

[1] Encloses items that are optional.

{} Encloses items that may be repeated.

italics Indicates a variable name or number for which
you must substitute information.

, Shows a range for an integer variable.

- Shows the start of an option name.

Binds a variable name to a range.

Logical OR to show a choice of one out of
many items. The OR operator may only
separate logical groups or literal keywords.

() Encloses a logical grouping for a choice

between sub-formats.

Example
Following are examples of syntax used for file names:

* infile[.ncd] shows that typing the .ncd extension is optional but that the extension
must be .ncd.

* infile.edn shows that the .edn extension is optional and is appended only if there
is no other extension in the file name.

For architecture-specific programs, such as BitGen, you can enter the following to get a
verbose help message for the specified architecture:

program_name —h architecture_name

You can redirect the help message to a file to read later or to print out by entering the
following:

program_name —h > filename

On the Linux command line, enter the following to redirect the help message to a file
and return to the command prompt.

program_name -h > & filename

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax

-intstyle ise|xflow]|silent
When using -intstyle, one of three modes must be specified:

e -intstyle ise indicates the program is being run as part of an integrated design
environment.

e -intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e -intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

20

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 1: Introduction

-p (Part Number)

This option specifies the part into which your design is implemented.

Syntax

-p part_number

This option can specify an architecture only, a complete part specification (device,
package, and speed), or a partial specification (for example, device and package only).
The part number or device name must be from a device library you have installed on
your system.

A complete Xilinx® part number consists of the following elements:
* Architecture (for example, spartan3e)

* Device (for example, xc3s100e)

* Package (for example, vq100)

* Speed (for example, -4)

Note The Speedprint program lists block delays for device speed grades. The -s option
lets you specify a speed grade. If you do not specify a speed grade, Speedprint reports
the default speed grade for the device you are targeting.

Specifying Part Numbers

You can specify a part number at various points in the design flow, not all of which
require the —p option.

¢ In the input netlist (does not require the —p option)

* Ina Netlist Constraints File (NCF) (does not require the —p option)
¢ With the —-p option when you run a netlist reader (EDIF2NGD)

* In the User Constraints File (UCF) (does not require the —p option)
¢ With the -p option when you run NGDBuild

By the time you run NGDBuild, you must have already specified a device
architecture.

¢ With the -p option when you run MAP

When you run MAP you must specify an architecture, device, and package, either
on the MAP command line or earlier in the design flow. If you do not specify a
speed, MAP selects a default speed. You can only run MAP using a part number
from the architecture you specified when you ran NGCBuild.

¢ With the -p option when you run SmartXplorer (FPGA designs only)

e With the —p option when you run CPLDFit (CPLD designs only)

Note Part numbers specified in a later step of the design flow override a part number
specified in an earlier step. For example, a part specified when you run MAP overrides a
part specified in the input netlist.

Examples

The following examples show how to specify parts on the command line.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 21

Chapter 1: Introduction

& XILINXe

Specification

Examples

Architecture only

virtex4

virtex5

spartan3

spartan3a

xc9500

xpla3 (CoolRunner™ XPLA3 devices)

Device only

xcdvix12
xc3s100e

DevicePackage

xc4fx12s£363
xc3s100evq100

Device-Package

xcdvix12-s£363
xc3s100e-vq100

DeviceSpeed-Package

xc4vix1210-sf363
xc3s100e4-vq100

DevicePackage-Speed

xc4fx12s£363-10
xc3s100evq100-4

Device-Speed-Package

xc4vix12-10-s£363
xc3s100e-4-vq100

Device-SpeedPackage

xc4vix12-10sf363
xc3s100e-4vq100

Invoking Command Line Programs

You start Xilinx® command line programs by entering a command at the Linux or DOS
command line. See the program-specific chapters in this book for the appropriate syntax

Xilinx also offers the XFLOW program, which lets you automate the running of several
programs at one time. See the XFLOW chapter for more information.

22

www.Xilinx.com

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 2

Design Flow

This chapter describes the process for creating, implementing, verifying, and
downloading designs for Xilinx® FPGA and CPLD devices. For a complete
description of Xilinx FPGA and CPLDs devices, refer to the Xilinx Data Sheets at:
http://www.xilinx.com/support/documentation/index.htm

This chapter contains the following sections:
* Design Flow Overview

¢ Design Entry and Synthesis

* Design Implementation

* Design Verification

¢ FPGA Design Tips

Design Flow Overview

The standard design flow comprises the following steps:

1. Design Entry and Synthesis - Create your design using a Xilinx®-supported
schematic editor, a Hardware Description Language (HDL) for text-based entry, or
both. If you use an HDL for text-based entry, you must synthesize the HDL file into
an EDIF file or, if you are using the Xilinx Synthesis Technology (XST) GUI, you
must synthesize the HDL file into an NGC file.

2. Design Implementation - Convert the logical design file format, such as EDIF, that
you created in the design entry and synthesis stage into a physical file format by
implementing to a specific Xilinx architecture. The physical information is contained
in the Native Circuit Description (NCD) file for FPGAs and the VM6 file for CPLDs.
Then create a bitstream file from these files and optionally program a PROM or
EPROM for subsequent programming of your Xilinx device.

3. Design Verification - Using a gate-level simulator or cable, ensure that your design
meets timing requirements and functions properly. See the iMPACT online help for
information about Xilinx download cables and demonstration boards.

The full design flow is an iterative process of entering, implementing, and verifying
your design until it is correct and complete. The command line tools provided with the
ISE® Design Suite allow quick design iterations through the design flow cycle. Xilinx
devices permit unlimited reprogramming. You do not need to discard devices when
debugging your design in circuit.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 23

http://www.xilinx.com/support/documentation/index.htm

Chapter 2: Design Flow & XILINX:

Xilinx Design Flow

This figure shows the standard Xilinx design flow.

Design Design Verification
Entry ‘
Simulation
Design
Synthesis
Design

Implementation

FPGAs
*Mapping
*Placement
*Routing

Back Timing
CPLDs _{ Annotatio n }_ Simulation

+Fitting
Bitstream
Generation
Download to a In-Circuit
Xilinx Device Verification

Static Timing
Analysis

X9537

Command Line Tools User Guide
24 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 2: Design Flow

Xilinx Software Design Flow (FPGAS)

This figure shows the Xilinx software flow chart for FPGA designs.

HOL

Testbench
Stimulus

Synthesis
Librarie s

Schemaltic Simulation
Librarie s Librarie s

IE)RE Generator

GO —r— . 1
l—_I
+ :
SOF 2.1 SDF 2.1 2
]

5

EDIF200 & NGC
Constrainis/NCF (XST Netlist)

uer) [nGDEBuilg HGDBuld NGDBuld NetGen |
Editar {_ NGD)}
= NGM & PCF } | MNetGen

Floorplanning]
in PlanAhead I

NCD & PCF

TRACE &
Tirming Analyzer

_—— ==

Il ProMGen | |
| |

Xilinx Software Design Flow (CPLDs)

X10293

This figure shows the Xilinx software flow chart for CPLD designs.

Schermatic
Librarie s

HOL Simulatio n Testbenc h
Libraria s Stirnulu s

Synthesi s
Librarie s

| CORE Generato r

| I Simulatio n

[NGC | I Schematic Caplur & | I Synthesis

EDIF200 & NGC V& VHD & EDIF
ConstraintsNC F (XST Netlist) SDF 2.1 SDF 2.1 200

I NGDBuil d NGDBuild NGDBuid I l NetGen
CPLD Finte r
| IMPACT | [Timing Analyze r | B
Command Line Tools User Guide
25

UG628 (v 12.1) April 19, 2010

www.Xilinx.com

Chapter 2: Design Flow & XILINX:

Design Entry and Synthesis

You can enter a design with a schematic editor or a text-based tool. Design entry begins
with a design concept, expressed as a drawing or functional description. From the
original design, a netlist is created, then synthesized and translated into a native generic
object (NGO) file. This file is fed into the Xilinx® software program called NGDBuild,
which produces a logical Native Generic Database (NGD) file.

The following figure shows the design entry and synthesis process.

Design Entry Flow

CORE Generator I

Schematic Synthesis
Libraries Libraries

‘ Schematic Capture ‘ | Synthesis |

UGCF EDIF200 & NGC
Constraints/NCF (XST Netlist)

[NGD Buil d |

Hierarchical Design

Design hierarchy is important in both schematic and HDL entry for the following
reasons:

* Helps you conceptualize your design
* Adds structure to your design
* Promotes easier design debugging

* Makes it easier to combine different design entry methods (schematic, HDL, or state
editor) for different parts of your design

* Makes it easier to design incrementally, which consists of designing, implementing,
and verifying individual parts of a design in stages

* Reduces optimization time

* TFacilitates concurrent design, which is the process of dividing a design among a
number of people who develop different parts of the design in parallel.

In hierarchical designing, a specific hierarchical name identifies each library element,
unique block, and instance you create. The following example shows a hierarchical
name with a 2-input OR gate in the first instance of a multiplexer in a 4-bit counter:

/Acc/alu_1/mult_4/8count_3/4bit _0/mux_1/0r2

Xilinx® strongly recommends that you name the components and nets in your design.
These names are preserved and used by FPGA Editor. These names are also used for
back-annotation and appear in the debug and analysis tools. If you do not name your
components and nets, the Schematic Editor automatically generates the names. For
example, if left unnamed, the software might name the previous example, as follows:

/$1a123/$1b942/$1c23/$1d235/$1e121/$19123/$1h57

Note It is difficult to analyze circuits with automatically generated names, because the
names only have meaning for Xilinx software.

26

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 2: Design Flow

Partitions

In hierarchical design flows, such as Design Preservation and Partial Reconfiguration,
partitions are used to define hierarchical boundaries so that a complex design can be
broken up into smaller blocks. Partitions create a boundary or insulation around the
hierarchical module, which isolates the module from other parts of the design. A
partition that has been implemented and exported can be re-inserted into the design
using a simple cut-and-paste type function, which preserves the placement and
routing results for the isolated module. All of the partition definitions and controls
are done in a file called xpartition.pxml. For more information on using the different
hierarchical design flows and implementing partitions, please see the Hierarchical
Design Methodology Guide (UG 748).

PXML File

Partition definitions are contained in the xpartition.pxml file. The PXML file is
case-sensitive, and must be named xpartition.pxml. The top level module of the design
must be defined as a partition in addition to any optional lower level partitions. The
PXML file can be created by hand, from scripts, or from a graphical user interface
(GUI) software tool, such as PlanAhead. The PXML will be picked up automatically
by the ISE implementation tools when located in the current working directory. For
more information about using the xpartition.pxml file, see the Hierarchical Design
Methodology Guide (UG 748). An example xpartition.pxml file is available at
%XILINX%/PlanAhead/testcases (where %XILINX% is your installation directory)
as if you wish to create a PXML file by hand.

<?xml version="1.0" encoding="UTF-8" ?>

<Project FileVersion="1.2" Name="Example'" ProjectVersion="2.0">
<Partition Name="/top" State="implement” ImportLocation="NONE">
<Partition Name="/top/module_A" State="import" ImportLocation="/home/user/Example/import" Preserve="routing">
</Partition>
<Partition Name="/top/module_B'" State="import" ImportLocation="__/import" Preserve="routing'>
</Partition>
<Partition Name="/top/module_C" State="implement" ImportLocation=""__/import" Preserve="placement">
</Partition>
</Partition>
</Project>

PXML attributes for Project definition

Attribute name Value Description

FileVersion 1.2 Do NOT change this value
Name Project_name Project_name is user defined.
ProjectVersion 2.0 Do NOT change this value

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 27

Chapter 2: Design Flow & XILINX:

PXML attributes for Partition definition

Attribute name Value Description

Name Partition_Name Hierarchical name of module
where the Partition should be
applied

State implement Partition will be

re-implemented from scratch.

import Partition will be imported and
preserved according to the
level set by Preserve.

ImportLocation path Ignored if State does not equal
"import". Path can be relative
or absolute, but the location
specified must contain a
valid "export" directory when
"State=import". "NONE" is a
predefined keyword for no
import directory.

Preserve routing Placement and Routing is
preserved (default for top
level Partition)

placement Placement is preserved,
routing can be moved

synthesis Placement and routing can be
moved

Schematic Entry Overview

Schematic tools provide a graphic interface for design entry. You can use these tools to
connect symbols representing the logic components in your design. You can build your
design with individual gates, or you can combine gates to create functional blocks.
This section focuses on ways to enter functional blocks using library elements and the
CORE Generator™ tool.

Library Elements

Primitives and macros are the “building blocks” of component libraries. Xilinx®
libraries provide primitives, as well as common high-level macro functions. Primitives
are basic circuit elements, such as AND and OR gates. Each primitive has a unique
library name, symbol, and description. Macros contain multiple library elements, which
can include primitives and other macros.

You can use the following types of macros with Xilinx FPGAs:

* Soft macros have pre-defined functionality but have flexible mapping, placement,
and routing. Soft macros are available for all FPGAs.

* Relationally placed macros (RPMs) have fixed mapping and relative placement.
RPMs are available for all device families, except the XC9500 family.

Macros are not available for synthesis because synthesis tools have their own module
generators and do not require RPMs. If you wish to override the module generation, you
can instantiate modules created using CORE Generator. For most leading-edge synthesis
tools, this does not offer an advantage unless it is for a module that cannot be inferred.

28

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 2: Design Flow

CORE Generator Tool (FPGAs Only)

The Xilinx CORE Generator tool delivers parameterizable cores that are optimized

for Xilinx FPGAs. The library includes cores ranging from simple delay elements to
complex DSP (Digital Signal Processing) filters and multiplexers. For details, refer to the
CORE Generator Help (part of ISE Help). You can also refer to the Xilinx IP (Intellectual
Property) Center Web site at http://www.xilinx.com/ipcenter, which offers the latest IP
solutions. These solutions include design reuse tools, free reference designs, Digital
Signal Processing (DSP), PCI™ solutions, IP implementation tools, cores, specialized
system level services, and vertical application IP solutions.

HDL Entry and Synthesis

A typical Hardware Description Language (HDL) supports a mixed-level description in
which gate and netlist constructs are used with functional descriptions. This mixed-level
capability lets you describe system architectures at a high level of abstraction and then
incrementally refine the detailed gate-level implementation of a design.

HDL descriptions offer the following advantages:

* You can verify design functionality early in the design process. A design written as
an HDL description can be simulated immediately. Design simulation at this high
level, at the gate-level before implementation, allows you to evaluate architectural
and design decisions.

¢ An HDL description is more easily read and understood than a netlist or schematic
description. HDL descriptions provide technology-independent documentation
of a design and its functionality. Because the initial HDL design description is
technology independent, you can use it again to generate the design in a different
technology, without having to translate it from the original technology.

¢ Large designs are easier to handle with HDL tools than schematic tools.

After you create your HDL design, you must synthesize it. During synthesis, behavioral
information in the HDL file is translated into a structural netlist, and the design is
optimized for a Xilinx® device. Xilinx supports HDL synthesis tools for several
third-party synthesis vendors. In addition, Xilinx offers its own synthesis tool, Xilinx
Synthesis Technology (XST). For more information, see the XST User Guide or the XST
User Guide for Virtex-6 and Spartan-6 Devices. For detailed information on synthesis, see
the Synthesis and Simulation Design Guide.

Functional Simulation

After you create your design, you can simulate it. Functional simulation tests the
logic in your design to determine if it works properly. You can save time during
subsequent design steps if you perform functional simulation early in the design flow.
See Simulation for more information.

Constraints

You may want to constrain your design within certain timing or placement parameters.
You can specify mapping, block placement, and timing specifications.

You can enter constraints manually or use the Constraints Editor or FPGA Editor, which
are graphical user interface (GUI) tools provided by Xilinx®. You can use the Timing
Analyzer GUI or TRACE command line program to evaluate the circuit against these
constraints by generating a static timing analysis of your design. See the TRACE chapter
and the online Help provided with the ISE® Design Suite for more information. For
more information on constraints, see the Constraints Guide.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 29

http://www.xilinx.com/ipcenter

Chapter 2: Design Flow & XILINX:

Mapping Constraints (FPGAs Only)

You can specify how a block of logic is mapped into CLBs using an FMAP for all
Spartan® and Virtex® FPGA architectures. These mapping symbols can be used in
your schematic. However, if you overuse these specifications, it may be difficult to
route your design.

Block Placement

Block placement can be constrained to a specific location, to one of multiple locations, or
to a location range. Locations can be specified in the schematic, with synthesis tools,

or in the User Constraints File (UCF). Poor block placement can adversely affect both
the placement and the routing of a design. Only I/O blocks require placement to meet
external pin requirements.

Timing Specifications

You can specify timing requirements for paths in your design. PAR uses these timing
specifications to achieve optimum performance when placing and routing your design.

Netlist Translation Programs

Netlist translation programs let you read netlists into the Xilinx® software tools.
EDIF2NGD lets you read an Electronic Data Interchange Format (EDIF) 2 0 0 file. The
NGDBuild program automatically invokes these programs as needed to convert your
EDIF file to an NGD file, the required format for the Xilinx software tools. NGC files
output from the Xilinx XST synthesis tool are read in by NGDBuild directly.

You can find detailed descriptions of the EDIF2NGD, and NGDBuild programs in the
NGDBuild chapter and the EDIF2NGD and NGDBuild Appendix.

Design Implementation

Design Implementation begins with the mapping or fitting of a logical design file to a
specific device and is complete when the physical design is successfully routed and a
bitstream is generated. You can alter constraints during implementation just as you did
during the Design Entry step. See Constraints for information.

The following figure shows the design implementation process for FPGA designs:

Command Line Tools User Guide
30 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 2: Design Flow

Design Implementation Flow (FPGAS)

—{ UCF } | NGDBuild

Censtraints Editor NGD I

Floorplanning
in PlanAhead

FPGA Editor [NCD & PCF

TRACE & |
Timing Analyzer PAR

R ————— NCD
BIT
PROMGen

—" IMPACT I

The following figure shows the design implementation process for CPLD designs:

x10288

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 31

Chapter 2: Design Flow & XILINX:

Design Implementation Flow (CPLDs)

NGDBuil d

Implementation Options
CPLD Fitter

| Design Loade r |

!

lAuloD ice/Speed Selecto r]l
Logic Synthesi s ——
Technology Mappin g

!

| Global Met Opti mizatio n

!

Logic Oplimizatio N |-e— Partitionin g
| Export Level Gene rator }-—I

Exporting
Assignment s

f

l PTerm Mappi }

l Pin Feedba ck Gene ration I.—
Post-Mappin g

Enhancement s

]

| Routin g

l—

Fitter Repo rt (Text
M HPLUSAS 6

| Power/Sl ew Optimizatio n |..._

iIMPACT
%9483

Mapping (FPGAs Only)

For FPGAs, the MAP command line program maps a logical design to a Xilinx® FPGA.
The input to MAP is an NGD file, which contains a logical description of the design in
terms of both the hierarchical components used to develop the design and the lower-level
Xilinx primitives, and any number of NMC (hard placed-and-routed macro) files, each
of which contains the definition of a physical macro. MAP then maps the logic to the
components (logic cells, I/O cells, and other components) in the target Xilinx FPGA.

The output design from MAP is an NCD file, which is a physical representation of
the design mapped to the components in the Xilinx FPGA. The NCD file can then be
placed and routed, using the PAR command line program. See the MAP chapter for
detailed information.

32

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 2: Design Flow

Note MAP provides options that enable advanced optimizations that are capable

of improving timing results beyond standard implementations. These advanced
optimizations can transform a design prior to or after placement. Optimizations can
be applied at two different stages in the Xilinx design flow. The first stage happens
right after the initial mapping of the logic to the architecture slices; the second stage if
after placement. See Re-Synthesis and Physical Synthesis Optimizations in the MAP
chapter for more information.

Placing and Routing (FPGAs Only)

For FPGAs, the PAR command line program takes a mapped NCD file as input, places
and routes the design, and outputs a placed and routed Native Circuit Description
(NCD) file, which is used by the bitstream generator, BitGen. The output NCD file can
also act as a guide file when you reiterate placement and routing for a design to which
minor changes have been made after the previous iteration. See the PAR chapter for
detailed information.

You can also use FPGA Editor to do the following:

* Place and route critical components before running automatic place and route tools
on an entire design.

* Modify placement and routing manually. The editor allows both automatic and
manual component placement and routing.

Note For more information, see the online Help provided with FPGA Editor.

Bitstream Generation (FPGAs Only)

For FPGAs, the BitGen command line program produces a bitstream for Xilinx®
device configuration. BitGen takes a fully routed NCD file as its input and produces

a configuration bitstream, which is a binary file with a . bit extension. The BIT file
contains all of the configuration information from the NCD file defining the internal
logic and interconnections of the FPGA, plus device-specific information from other files
associated with the target device. See the BitGen chapter for detailed information.

After you generate your BIT file, you can download it to a device using the iMPACT GUL
You can also format the BIT file into a PROM file using the PROMGen command line
program and then download it to a device using the iMPACT GUL See the PROMGen
chapter of this guide or the iMPACT online help for more information.

Design Verification
Design verification is testing the functionality and performance of your design. You can
verify Xilinx® designs in the following ways:
¢ Simulation (functional and timing)
e Static timing analysis
e In-circuit verification

The following table lists the different design tools used for each verification type.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 33

Chapter 2: Design Flow & XILINX:

Verification Tools

Verification Type Tools

Simulation Third-party simulators (integrated and
non-integrated)

Static Timing Analysis TRACE (command line program)
Timing Analyzer (GUI)

Mentor Graphics TAU and Innoveda BLAST
software for use with the STAMP file format
(for I/O timing verification only)

In-Circuit Verification Design Rule Checker (command line program)

Download cable

Design verification procedures should occur throughout your design process, as shown
in the following figures.

Three Verification Methods of the Design Flow (FPGAS)

Simulation

Input Stimulus

Basic Design Fl ow

Integrated Too|

D

Simulation esign Entr
anon | [osen T

Functional Simu lator
Paths

(;) . Translate to
Simulation Netli st
imutat ! Simulator Forma t NGD

Translate to
Simulator Forma t

Mapping, Place ment
and Routing

Static Timing
Timing Simulati on Path

_@ —{ NCD j—.. Static Timing An alysis
BitGen |

In-Circu it Verific ation
(BIT In-Circuit Verific ation

Back-Annotatio n |

Xilinx FPGA
x8556

The following figure shows the verification methods of the design flow for CPLDs.

34

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 2: Design Flow

Three Verification Methods of the Design Flow (CPLDs)

Simulation

Input Stimulus

Basic Design Flow

Integrated Tool

Simulation Design Entry
— | Functional Simu lator L
Paths
(i] i) - Translate to
Simulation Netli st .
Simulator Forma t NGD
Translate to R
Simulator Forma t Optimization an d
Fitting

Static Timing
Timing Simulati on Path

_@ VMG Static Timing An alysis

X
Programming
File Creation
In-Circuit Verification
| Back-Annotatio n |
JED In-Circuit Verific ation
NGA
Xilinxk CPLD

o538

Simulation

You can run functional or timing simulation to verify your design. This section describes
the back-annotation process that must occur prior to timing simulation. It also describes
the functional and timing simulation methods for both schematic and HDL-based
designs.

Back-Annotation

Before timing simulation can occur, the physical design information must be translated
and distributed back to the logical design. For FPGAs, this back-annotation process is
done with a program called NetGen. For CPLDs, back-annotation is performed with
the TSim Timing Simulator. These programs create a database, which translates the
back-annotated information into a netlist format that can be used for timing simulation.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 35

Chapter 2: Design Flow & XILINX:

NetGen

Back-Annotation Flow for FPGASs

NGD
Logical Design

Simulation Netlist
Equivalence Checking
Netlist
Static Timing Analysis
Netlist

NCD
Physical Design
(Mapped)

NCD
Physical Design

(Placed and Routed)
X10298

Back-Annotation (CPLDs)
L~
()

SDF

NetGen

VHD

NGD SDF
Logical Design

Command line only

Optimization (NGA)

and Fitting

TSIM
Timing Simulator

VM8
Physical Design

X102e7

NetGen is a command line program that distributes information about delays, setup
and hold times, clock to out, and pulse widths found in the physical Native Circuit
Description (NCD) design file back to the logical Native Generic Database (NGD) file
and generates a Verilog or VHDL netlist for use with supported timing simulation,
equivalence checking, and static timing analysis tools.

NetGen reads an NCD as input. The NCD file can be a mapped-only design, or a
partially or fully placed and routed design. An NGM file, created by MAP, is an optional
source of input. NetGen merges mapping information from the optional NGM file with
placement, routing, and timing information from the NCD file.

Note NetGen reads an NGA file as input to generate a timing simulation netlist for
CPLD designs.

See the NetGen chapter for detailed information.

36

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 2: Design Flow

Functional Simulation

Functional simulation determines if the logic in your design is correct before you
implement it in a device. Functional simulation can take place at the earliest stages of
the design flow. Because timing information for the implemented design is not available
at this stage, the simulator tests the logic in the design using unit delays.

Note It is usually faster and easier to correct design errors if you perform functional
simulation early in the design flow.

Timing Simulation

Timing simulation verifies that your design runs at the desired speed for your device
under worst-case conditions. This process is performed after your design is mapped,
placed, and routed for FPGAs or fitted for CPLDs. At this time, all design delays are
known.

Timing simulation is valuable because it can verify timing relationships and determine
the critical paths for the design under worst-case conditions. It can also determine
whether or not the design contains set-up or hold violations.

Before you can simulate your design, you must go through the back-annotation process,
above. During this process, NetGen creates suitable formats for various simulators.

HDL-Based Simulation

Xilinx® supports functional and timing simulation of HDL designs at the following
points:

Register Transfer Level (RTL) simulation, which may include the following:
- Instantiated UNISIM library components

— CORE Generator™ models

— Hard IP (SecurelP)

Post-synthesis functional simulation with one of the following;:

— Gate-level UNISIM library components

— CORE Generator models

— Hard IP (SecurelP)

Post-implementation back-annotated timing simulation with the following:
— SIMPRIM library components

— Hard IP (SecurelP)

— Standard Delay Format (SDF) file

The following figure shows when you can perform functional and timing simulation:

Command Line Tools User Guide

UG628 (v 12.1) April 19, 2010

www.Xilinx.com 37

Chapter 2: Design Flow & XILINX:

Simulation Points for HDL Designs

HDL
Design

——

UniSim HDL RTL Testbench
Library Simulation Stimulus
\“-.__________.--“’

Modules

LogiBLOX — Synthesis
\-.___________/

© Post-Sy is Gate-Level

CORE Generator Functional Simulation
Modules

Kilinx
Implementation

i . HDL Timing
SimPrim Simulation
Library

The three primary simulation points can be expanded to allow for two post-synthesis
simulations. These points can be used if the synthesis tool cannot write VHDL or
Verilog, or if the netlist is not in terms of UNISIM components. The following table lists
all the simulation points available in the HDL design flow.

B4

Five Simulation Points in HDL Design Flow

Simulation UNISIM SIMPRIM SDF

RTL X

Post-Synthesis X

Functional X
Post-NGDBuild
(Optional)

Functional Post-MAP X X
(Optional)

Post-Route Timing X X

These simulation points are described in the “Simulation Points” section of the Synthesis
and Simulation Design Guide.

The libraries required to support the simulation flows are described in detail in the
“VHDL/Verilog Libraries and Models” section of the Synthesis and Simulation Design
Guide. The flows and libraries support close functional equivalence of initialization
behavior between functional and timing simulations. This is due to the addition of
methodologies and library cells to simulate Global Set/Reset (GSR) and Global 3-State
(GTS) behavior.

Xilinx VHDL simulation supports the VITAL standard. This standard allows you
to simulate with any VITAL-compliant simulator. Built-in Verilog support allows
you to simulate with the Cadence Verilog-XL and compatible simulators. Xilinx HDL
simulation supports all current Xilinx FPGA and CPLD devices. Refer to the Synthesis
and Simulation Design Guide for the list of supported VHDL and Verilog standards.

38

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 2: Design Flow

Static Timing Analysis (FPGAs Only)

Static timing allows you to determine path delays in your design. Following are the
two major goals of static timing analysis:

* Timing verification
This is verifying that the design meets your timing constraints.
* Reporting

This is enumerating input constraint violations and placing them into an accessible
file. You can analyze partially or completely placed and routed designs. The timing
information depends on the placement and routing of the input design.

You can run static timing analysis using the Timing Reporter And Circuit Evaluator
(TRACE) command line program. See the TRACE chapter for detailed information. You
can also use the Timing Analyzer to perform this function. See the Help that comes with
Timing Analyzer for additional information. Use either tool to evaluate how well the
place and route tools met the input timing constraints.

In-Circuit Verification

As a final test, you can verify how your design performs in the target application.
In-circuit verification tests the circuit under typical operating conditions. Because you
can program your FPGA devices repeatedly, you can easily load different iterations of
your design into your device and test it in-circuit. To verify your design in-circuit,
download your design bitstream into a device with the appropriate Xilinx® cable.

Note For information about Xilinx cables and hardware, see the iMPACT online help.

Design Rule Checker (FPGAs Only)

Before generating the final bitstream, it is important to use the DRC option in BitGen
to evaluate the NCD file for problems that could prevent the design from functioning
properly. DRC is invoked automatically unless you use the —d option. See the Physical
Design Rule Check chapter and the BitGen chapter for detailed information.

Probe

The Xilinx PROBE function in FPGA Editor provides real-time debug capability good
for analyzing a few signals at a time. Using PROBE a designer can quickly identify and
route any internal signals to available I/O pins without having to replace and route the
design. The real-time activity of the signal can then be monitored using normal lab test
equipment such as logic/state analyzers and oscilloscopes.

ChipScope™ ILA and ChipScope Pro

The ChipScope toolset was developed to assist engineers working at the PCB level.
ChipScope ILA actually embeds logic analyzer cores into your design. These logic cores
allow the user to view all the internal signals and nodes within an FPGA. Triggers are
changeable in real-time without affecting the user logic or requiring recompilation

of the user design.

FPGA Design Tips

The Xilinx® FPGA architecture is best suited for synchronous design. Strict synchronous
design ensures that all registers are driven from the same time base with no clock skew.
This section describes several tips for producing high-performance synchronous designs.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 39

Chapter 2: Design Flow & XILINX:

Design Size and Performance

Information about design size and performance can help you to optimize your design.
When you place and route your design, the resulting report files list the number of
CLBs, IOBs, and other device resources available. A first pass estimate can be obtained
by processing the design through the MAP program.

If you want to determine the design size and performance without running automatic
implementation software, you can quickly obtain an estimate from a rough calculation
based on the Xilinx FPGA architecture.

Command Line Tools User Guide
40 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 3

PARTGen

This chapter describes PARTGen. This chapter contains the following sections.
¢ PARTGen Overview

* PARTGen Command Line Syntax

* PARTGen Command Line Options

PARTGen Overview

PARTGen is a Xilinx® command line tool that displays architectural details about
supported Xilinx devices.

Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

e Virtex®-4, Virtex-5, and Virtex-6

¢ CoolRunner™ XPLA3 and CoolRunner-II

e X(C9500 and XC9500XL

PARTGen Input Files

PARTGen does not have any user input files.

PARTGen Output Files

PARTGen outputs two file types:
* PARTGen Partlist Files (ASCII and XML)
¢ PARTGen Package Files (ASCII)

PARTGen Partlist Files

PARTGen partlist files contain detailed information about architectures and devices,

including supported synthesis tools. Partlist files are generated in both ASCII (. Xct)
and XML (.xml) formats.

The partlist file is automatically generated in XML format whenever a partlist file is
created with the PARTGen -p (Generate Partlist and Package Files) or PARTGen -v

(Generate Partlist and Package Files) options. No separate command line option is
required.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 41

Chapter 3: PARTGen

& XILINXe

The partlist file is a series of part entries. There is one entry for every part supported
in the installed software. The following sections describe the information contained
in the partlist file.

PARTGen Partlist File Header
PARTGen Partlist File Device Attributes for Both -p and -v Options
PARTGen Partlist File Device Attributes for -v Option Only

PARTGen Partlist File Header
The first part of a PARTGen partlist file is a header for the entry.

part architecture family partname diename packagefilename
PARTGen Partlist File Header Example for XC6VLX550TFF1759 Device
partVIRTEX XC6VLX550TFF1759 NA.die xc6vIx550tfFfFl759.pkg

PARTGen Partlist File Device Attributes for both -p and -v Options

The following PARTGen partlist file device attributes display for both the -p and -v
command line options.

CLB row and column sizes

NCLBROWS=# NCLBCOLS=#

Sub-family designation

STYLE=sub_family (For example, STYLE = Virtex6)
Input registers

IN_FF_PER_IOB=#

Output registers

OUT_FF_PER_IOB=#

Number of pads per row and per column
NPADS_PER_ROW=# NPADS_PER_COL=#
Bitstream information

— Number of frames: NFRAMES=#

— Number bits/frame: NBITSPERFRAME=#

Stepping levels supported: STEP=#
I/O Standards

For each I/O standard, PARTGen now reports all properties in a parsable format.
This allows third party tools to perform complete I/O banking design rules checking
(DRC).

The following information has been added to the partlist.xct and
partlist.xml output for each available I/O standard:

IOSTD_NAME: LVTTL \
IOSTD_DRIVE: 12 2 4 6 8 16 24 \
I0OSTD_SLEW: SLOW FAST \
I0STD_DIRECTION: INPUT=1 OUTPUT=1 BIDIR=1 \
I0STD_INPUTTERM: NONE \
I0STD_OUTPUTTERM: NONE \
10STD_VCCO: 3.300000 \
I0STD_VREF: 100.000000 \
I0STD_VRREQUIRED: O \
I0STD_DIFFTERMREQUIRED: O \

42

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 3: PARTGen

For IOSTD_DRIVE and IOSTD_SLEW, the default values are reported first in the
list. For true/false values:

— 1 indicates true

— O indicates false

A value of 100.000000 for IOSTD_VREF indicates that this keyword is undefined

for this standard.
e SO and WASSO Calculations

PARTGen now exports I/O standard and device properties in a machine readable
format. This allows third party tools to perform SSO and WASSO calculations.

SSO data consists of two parts:
— The maximum number of SSOs allowed per power/ground pair
— The number of power/ground pairs for a given bank.

This data has been added to the partlist.xct and partlist.xml output for
each device/package combination. The number of power/ground pairs is listed
by bank number:

PER_BANK_PWRGND_PAIRS\
BANK_SSO NAME=0 TYPE=INT 1\
BANK_SSO NAME=1 TYPE=INT 1\
BANK_SSO NAME=2 TYPE=INT 1\
BANK_SSO NAME=3 TYPE=INT 1\
BANK_SSO NAME=4 TYPE=INT 1\
BANK_SSO NAME=5 TYPE=INT 5\
BANK_SSO NAME=6 TYPE=INT 5\
BANK_SSO NAME=7 TYPE=INT 3\
BANK_SSO NAME=8 TYPE=INT 3\

The maximum number of SSOs allowed per power/ground pair is reported using

the SSO_PER_IOSTD keyword. Each entry reflects the maximum number of SSOs

(column 5) for the I/O standard (column 3), drive strength (column 2), and slew
rate (column 4) shown.

For example, LVTTL, with drive strength 12 and slew rate SLOW, has a maximum of

15 SSOs per power/ground pair.

MAX_SSO_PER_10STD_PER_BANK\
10STD_SSO DRIVE=12 NAME=LVTTL SLEW=SLOW TYPE=INT 15\
10STD_SSO DRIVE=12 NAME=LVTTL SLEW=FAST TYPE=INT 10\

10STD_SSO
10STD_SSO
10STD_SSO
10STD_SSO
10STD_SSO
10STD_SSO
10STD_SSO
10STD_SSO
10STD_SSO
10STD_SSO
10STD_SSO
10STD_SSO

DRIVE=2
DRIVE=2
DRIVE=4
DRIVE=4
DRIVE=6
DRIVE=6
DRIVE=8
DRIVE=8

DRIVE=16 NAME=LVTTL SLEW=SLOW TYPE=INT 11\
DRIVE=16 NAME=LVTTL SLEW=FAST TYPE=
DRIVE=24 NAME=LVTTL SLEW=SLOW TYPE=

NAME=LVTTL
NAME=LVTTL
NAME=LVTTL
NAME=LVTTL
NAME=LVTTL
NAME=LVTTL
NAME=LVTTL
NAME=LVTTL

SLEW=SLOW
SLEW=FAST
SLEW=SLOW
SLEW=FAST
SLEW=SLOW
SLEW=FAST
SLEW=SLOW
SLEW=FAST

TYPE=INT
TYPE=INT
TYPE=INT
TYPE=INT
TYPE=INT
TYPE=INT
TYPE=INT
TYPE=INT

68\
40\
41\
24\
29\
17\
22\
13\

INT 8\
INT 7\

DRIVE=24 NAME=LVTTL SLEW=FAST TYPE=INT 5\

Device global, local and regional clocking properties

For each type of clock available on the device, PARTGen now reports:

Which pin number can behave as which clock type
Which I/O can be driven by this clock pin

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

www.Xilinx.com

43

Chapter 3: PARTGen £ XILINX:

This allows third party tools to assign pins on Xilinx® packages without violating
clocking rules.

The following information has been added to the partlist.xct and
partlist.xml output for each clock region of a device:

DEVICE_CLKRGN\
NUM_CLKRGN TYPE=INT 8\
NUM_CLKRGN_ROW TYPE=INT 4\
NUM_CLKRGN_COL TYPE=INT 2\
CLKRGN TYPE=STRING XOYO\
CLK_CAPABLE_SCOPE\
UNASSOCIATED_PINS\
NUM_UNBONDED_PINS TYPE=INT 2\
UNBONDED_PIN_LIST TYPE=STRINGLIST T17R17\
UNBONDED_10B_LIST TYPE=STRINGLIST 10B_XOY1510B_X0Y17\
ASSOCIATED_BUFI0O\
NUM_BUFIO TYPE=INT 4\
BUFI0_SITES TYPE=STRINGLIST BUFIO_XOYOBUFIO_XOY1BUFIO_X1YOBUFIO_X1Y1\
ASSOCIATED_BUFR\
NUM_BUFR TYPE=INT 2\
BUFR_SITES TYPE=STRINGLIST BUFR_XOYOBUFR_XOY1\
ASSOCIATED_PINS\
NUM_BONDED_PINS TYPE=INT 39\
BONDED_PIN_LIST TYPE=STRINGLIST V18V17W17Y17W19W18U17U16V20V19U15T15U19U18T18\
T17R18R17T20T19R16R15R20R1OWSWOYOY10W7Y7WIOWLIWEYBY11Y12W5YS5W12\

BONDED_10B_LIST TYPE=STRINGLIST 10B_XOYOIOB_XOY110B_XO0Y210B_XOY310B_X0Y410B_X0Y510B_\
XOY610B_XOY710B_XOYS810B_XOY910B_XOY1010B_XOY1110B_XOY1210B_X0Y1310B_X0Y1410B_\
X0Y1510B_X0Y1610B_X0Y1710B_X0Y1810B_X0Y1910B_X0Y2210B_X0Y2310B_X0Y2410B_X0Y2510B_\
X1Y1610B_X1Y1710B_X1Y1810B_X1Y1910B_X1Y2010B_X1Y2110B_X1Y2210B_X1Y2310B_X1Y2410B_\
X1Y2510B_X1Y2610B_X1Y2710B_X1Y2810B_X1Y2910B_X1Y30\

PARTGen Partlist File Device Attributes for partgen -v Option Only

The following PARTGen partlist file device attributes display for the -v command
line option only.

e Number of IOBS in device
NIOBS=#

e Number of bonded IOBS
NBIOBS=#

* Slices per CLB: SLICES_PER_CLB=#

For slice-based architectures. For non-slice based architectures, assume one slice
per CLB.

* Flip-flops for each slice
FFS_PER_SLICE=#
* Latches for each slice
CAN BE LATCHES={TRUE | FALSE}
e Number of DCMs, PLLs and/or MMCMs
e LUTsin aslice: LUT_NAME=name LUT_SIZE=#
* Number of global buffers: NUM_GLOBAL_BUFFERS=#
(The number of places where a buffer can drive a global clock combination)
e Block RAM

Command Line Tools User Guide
44 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 3: PARTGen

NUM_BLK_RAMS=# BLK_RAM_COLS=# BLK_RAM_COLO=# BLK_RAMCOL1=#
BLK_RAM_COL2=# BLK_RAM_COL_3=# BLK_RAM_SIZE=4096x1
BLK_RAM_S1ZE=2048x2 BLK_RAM_SIZE=512x8 BLK_RAM_SI1ZE=256x16

Block RAM locations are given with reference to CLB columns. In the following
example, Block RAM 5 is positioned in CLB column 32.

NUM_BLK RAMS=10 BLK RAM_COL_5=32 BLK RAM_SIZE=4096X1
e Select RAM

NUM_SEL_RAMS=# SEL_RAM_SIZE=#X#
e Select Dual Port RAM

SEL_DP_RAM={TRUE] FALSE}

This field indicates whether the select RAM can be used as a dual port ram. The
assumption is that the number of addressable elements is reduced by half, that is, the
size of the select RAM in Dual Port Mode is half that indicated by SEL_RAM_SIZE.

* Speed grade information: SPEEDGRADE=#

Delays information no longer appears in the XCT and XML partlist files. Delay
information can be obtained using Speedprint. For more information, see the
Speedprint chapter in this document.

e Maximum LUT constructed in a slice
MAX_LUT_PER_SLICE=# (From all the LUTs in the slice)
e Max LUT constructed in a CLB: MAX_LUT_PER_CLB=#

This field describes how wide a LUT can be constructed in the CLB from the
available LUTs in the slice.

e Number of internal tristate buffers in a device
NUM_TBUEFS PER ROW=#

e If available on a particular device or package, PartGen reports:

NUM_PPC=#
NUM_GT=#
NUM_MON I TOR=#
NUM_DPM=#
NUM_PMCD=#
NUM_DSP=#
NUM_F1FO=#
NUM_EMAC=#
NUM_MULT=#

PARTGen Package Files

PARTGen package files are ASCII formatted files that correlate IOBs with output

pin names. Package files are in XACT package format, which is a set of columns of
information about the pins of a particular package. The -p (terse) command line option
generates a three column entry describing the pins. The -v (verbose) command line
option adds six more columns describing the pins. The following sections describe the
information contained in the package files.

* PARTGen Package Files With the -p Option
* PARTGen Package Files With the -v Option

PARTGen Package Files Using the -p Option

The partgen -p command line option generates package files and displays a
three-column entry describing the pins. See the following table.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 45

Chapter 3: PARTGen

& XILINXe

Package Files Column Descriptions

Column Contents Description

1 pin (user accessible pin) or pkgpin Contains either pin (user accessible pin)
(dedicated pin) or pkgpin (dedicated pin)

2 pin name For user accessible pins, the name of the

pin is the bonded pad name associated
with an IOB on the device, or the name
of a multi-purpose pin. For dedicated
pins, the name is either the functional
name of the pin, or no connection (N.C.

3 package pin Specifies the package pin

For example, the command partgen -p xc6vIx75t generates the following package
files:

e Xc6vIx75tff484._pkg
e Xc6vIX75tfFf784._pkg

Package File Example Using the -p Option
Following is an example of a portion of the package file for an xc6vIx75tff484 package:

package xc6vIx75tff484
pin IPAD_X1Y25 G3
pin IPAD_X0Y31 M11
pin 10B_X0Y39 M18

PARTGen Package Files Using the -v Option

The partgen -v command line option generates package files and displays a
nine-column entry describing the pins. See the following table.

Package Files Column Descriptions

Column | Contents Description

1 pin (user accessible pin) or pkgpin Contains either pin (user accessible pin)
(dedicated pin) or pkgpin (dedicated pin)

2 pin name For user accessible pins, the name of the

pin is the bonded pad name associated
with an IOB on the device, or the name
of a multi-purpose pin. For dedicated
pins, the name is either the functional
name of the pin, or no connection (N.C.

3 package pin Specifies the package pin

4 VREF BANK A positive integer associated with
the relative bank, or 1 for no bank
association

5 VCCO BANK A positive integer associated with
the relative bank, or 1 for no bank
association

6 function name Consists of a string indicating how the

pin is used. If the pin is dedicated,
then the string will indicate a specific

function. If the pin is a generic user

46

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 3: PARTGen

Column

Contents

Description

pin, the string is “IO”. If the pin is
multipurpose, an underscore-separated
set of characters will make up the string

CLB

Closest CLB row or column to the pin,
and appears in the form

R[0-9]C[0-9] or x[0-9]y[0-9]

LVDS IOB

A string for each pin associated with a
LVDS IOB. The string consists of and
index and the letter M or S. Index values
will go from 0 to the number of LVDS
pairs. The value for a non-LVDS pin
defaults to N.A.

flight-time data

Flight-time data in units of microns.
If no flight-time data is available, this
column contains N/A.

PARTGen Verbose Pin Descriptors Example

Following are examples of the verbose pin descriptors in PARTGen.

package xc6vIx75tff484
PartGen L.44

pad pin
name name
pin IPAD_X1Y25 G3
pin 1PAD_XO0Y31 M11
pin 10B_X0Y39 M18
pin 10B_X0Y38 N18

PARTGen Syntax

vref vcco

bank
-1
0
14
14

The PARTGen command line syntax is:

partgen options

function nearest diff. tracelength
name CLB pair (um)
MGTRXPO_115 N.A. N.A. 8594
VN_O N.A. N.A. 1915
10_LOP_14 X0Y38 oM 4111
10_LON_14 X0Y38 0s 3390

options can be any number of the options listed in PARTGen Command Line Options.
Enter options in any order, preceded them with a dash (minus sign on the keyboard)

and separate them with spaces.

Both package and partlist files can be generated using the partgen -p (terse) and

partgen -v (verbose) options.

* partgen -p generates a three column entry describing the pins.

* partgen -V adds six more columns describing the pins.

PARTGen Command Line Options

This section describes the PARTGen command line options.

¢ PARTGen —arch (Output Information for Specified Architecture)
* PARTGen —i (Output List of Devices, Packages, and Speeds)

¢ PARTGen —intstyle (Specify Integration Style)

* PARTGen -nopkgfile (Generate No Package File)
* PARTGen —p (Generate Partlist and Package Files)
* PARTGen —v (Generate Partlist and Package Files)

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

www.Xilinx.com

47

Chapter 3: PARTGen

& XILINXe

-arch (Output Information for Specified Architecture)

This option outputs a list of devices, packages, and speeds for a specified architecture.

Syntax

-arch architecture_name

Allowed values for architecture_name are:

acr2 (for Automotive CoolRunner™-II)
aspartan3 (for Automotive Spartan®-3)
aspartan3a (for Automotive Spartan-3A)
aspartan3adsp (for Automotive Spartan-3A DSP)
aspartan3e (for Automotive Spartan-3E)
aspartan6 (for Automotive Spartan-6)
qrvirtex4 (for QPro™ Virtex®-4 Rad Tolerant)
qvirtex4 (for QPro Virtex-4 Hi-Rel)
qvirtex5 (for QPro Virtex-5 Hi-Rel)
gspartan6 (for QPro Spartan-6 Hi-Rel)
qvirtex6 (for QPro Virtex-6 Hi-Rel)
spartan3 (for Spartan-3)

spartan3a (for Spartan-3A)
spartan3adsp (for Spartan-3A DSP)
spartan3e (for Spartan-3E)

spartan6 (for Spartan-6)

virtex4 (for Virtex-4)

virtex5 (for Virtex-5)

virtex6 (for Virtex-6)

virtex6l (for Virtex-6 Low Power)
xa9500x1 (for Automotive XC9500XL)
xbr (for CoolRunner-II)

xc9500 (for XC9500)

xc9500xl (for XC9500XL)

xpla3 (for CoolRunner XPLA3)

-1 (Output List of Devices, Packages, and Speeds)

This option outputs a list of devices, packages, and speeds for every installed device.

Syntax

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

48

www.Xilinx.com

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 3: PARTGen

Syntax
-intstyle ise|xflow]|silent

When using —intstyle, one of three modes must be specified:
e -intstyle ise indicates the program is being run as part of an integrated design

environment.

e -intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e -intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

-nopkgfile (Generate No Package File)

This option cancels the production of the package files when the —-p and -V options are
used. The —nopkgfi le option allows you to bypass creating package files.

Syntax
-nopkgfile

-p (Generate Partlist and Package Files)

This command line option generates:
e Partlist files in ASCII (.xct) and XML (.xml) formats
* Package files in ASCII (.pkg) format

Syntax
-p name

Valid entries for name include:
e architectures
e devices

® parts
All files are placed in the working directory.

If an architecture, device, or part is not specified with this option, detailed information
for every installed device is submitted to the partlist.xct file. For more information,
see PARTGen Partlist Files.

The -p option generates more detailed information than the —-arch option, but less
information than the -v option. The -p and -V options are mutually exclusive. You can
specify one or the other but not both. For more information see:

¢ PARTGen Package Files
¢ PARTGen Partlist Files

Examples of Valid Command Line Entries

Name Example Command Line Entry
architecture -p virtex5

device -p xc5vix110t

part -p xc5vIx110tff1136

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 49

Chapter 3: PARTGen

& XILINXe

-v (Generate Partlist and Package Files)

This command line option generates:
e Partlist files in ASCII (.xct) and XML (.xml) formats
e Package files in ASCII (. pkg) format

Syntax

-V name

Valid entries for name include:
e architectures

e devices

®* parts

If no architecture, device, or part is specified with the -v option, information for every
installed device is submitted to the partlist file. For more information, see PARTGen
Partlist Files.

The -v option generates more detailed information than the —p option. The -p and -v
options are mutually exclusive. You can specify one or the other but not both. For
more information, see:

¢ PARTGen Package Files
e PARTGen Partlist Files

Examples of Command Line Entries for the -v Option

Name Example Command Line Entry
architecture partgen -v virtex6

device partgen -v xc5vIx110t

part partgen -v xc5vIx110tff1136

50

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 4

NetGen

This chapter describes the NetGen program, which generates netlists for use with
third-party tools. This chapter contains the following sections:

¢ NetGen Overview

* NetGen Simulation Flow

¢ NetGen Equivalence Checking Flow

* NetGen Static Timing Analysis Flow

* Preserving and Writing Hierarchy Files

¢ Dedicated Global Signals in Back-Annotation Simulation

NetGen Overview

NetGen is a command line executable that reads Xilinx® design files as input, extracts
data from the design files, and generates netlists that are used with supported
third-party simulation, equivalence checking, and static timing analysis tools.

NetGen can take an implemented design file and write out a single netlist for the
entire design, or multiple netlists for each module of a hierarchical design. Individual
modules of a design can be simulated on their own, or together at the top-level.
Modules identified with the KEEP_HIERARCHY attribute are written as user-specified
Verilog, VHDL, and SDF netlists with the -mhf (Multiple Hierarchical Files) option. See
Preserving and Writing Hierarchy Files for additional information.

NetGen Flows
NGD
| MAP

NCD
Physical Design
(Mapped)

Simulation Netlist

Equivalence Checking
Netlist

Static Timing Analysis
Netlist

NetGen

NCD
Physical Design
(Placed and Routed)

NetGen can be described as having three fundamental flows: simulation, equivalency
checking, and third-party static timing analysis. This chapter contains flow-specific
sections that detail the use and features of NetGen support flows and describe any
sub-flows. For example, the simulation flow includes two flows types: functional
simulation and timing simulation.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 51

Chapter 4: NetGen

& XILINXe

Each flow-specific section includes command line syntax, input files, output files, and
available command line options for each NetGen flow.

NetGen syntax is based on the type of NetGen flow you are running. For details on
NetGen flows and syntax, refer to the flow-specific sections that follow.

Valid netlist flows are:

* -sim (Simulation) - generates a simulation netlist for functional simulation or timing
simulation. For this netlist type, you must specify the output file type as Verilog or
VHDL with the —ofmt option.

netgen -sim [options]

e -ecn (Equivalence) - generates a Verilog-based equivalence checking netlist. For this
netlist type, you must specify a tool name after the —ecn option. Possible tool names
for this netlist type are conformal or formality.

netgen -ecn conformal | formality [options]

* -sta (Static Timing Analysis) - generates a Verilog netlist for static timing analysis.
netgen -sta [options]

NetGen supports the following flow types:

* Functional Simulation for FPGA and CPLD designs

* Timing Simulation for FPGA and CPLD designs

¢ Equivalence Checking for FPGA designs

e Static Timing Analysis for FPGA designs

The flow type that NetGen runs is based on the input design file (NGC, NGD, or NCD).
The following table shows the output file types, based on the input design files:

NetGen Output Files

Input Design File Output File Type

NGC UNISIM-based functional simulation netlist

NGD SIMPRIM-based functional netlist

NGA from CPLD SIMPRIM-based netlist, along with a full
timing SDF file.

NCD from MAP SIMPRIM-based netlist, along with a partial
timing SDF file

NCD from PAR SIMPRIM-based netlist, along with a full
timing SDF file

NetGen Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

e Virtex®-4, Virtex-5, and Virtex-6

¢ CoolRunner™ XPLA3 and CoolRunner-II

e X(C9500 and XC9500XL

52

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

NetGen Simulation Flow

Within the NetGen Simulation flow, there are two sub-flows: functional simulation and
timing simulation. The functional simulation flow may be used for UNISIM-based or
SIMPRIM-based netlists, based on the input file. An input NGC file will generate a
UNISIM-based netlist for functional simulation. An input NGD file will generate a
SIMPRIM-based netlist for functional simulation. Similarly, timing simulation can be
broken down further to post-map timing simulation and post-par timing simulation,
both of which use SIMPRIM-based netlists.

Note NetGen does not list LOC parameters when an NGD file is used as input. In this
case, UNPLACED is reported as the default value for LOC parameters.

Options for the NetGen Simulation flow (and sub-flows) can be viewed by running
netgen -h sim from the command line.

NetGen Functional Simulation Flow

This section describes the functional simulation flow, which is used to translate NGC
and NGD files into Verilog or VHDL netlists.

When you enter an NGC file as input on the NetGen command line, NetGen invokes
the functional simulation flow to produce a UNISIM-based netlist. Similarly, when you
enter an NGD file as input on the NetGen command line, NetGen invokes the functional
simulation flow to produce a SIMPRIM-based netlist. You must also specify the type of
netlist you want to create: Verilog or VHDL.

The Functional Simulation flow uses the following files as input:

* NGC - This file output by XST is used to create a UNISIM-based netlist suitable for
using with IP Cores and performing post-synthesis functional simulation.

* NGD - This file output by NGDBuild contains a logical description of the design
and is used to create a SIMPRIM-based netlist.

Functional Simulation for UNISIM-based Netlists

For XST users, the output NGC file can be entered on the command line. For third-party
synthesis tool users, you must first use the ngcbuild command to convert all of the
design netlists to a single NGC file, which NetGen takes as input.

The following command reads the top-level EDIF netlist and converts it to an NGC file:
ngcbuild [options] top_level netlist _file output ngc file

Output files for NetGen Functional Simulation

e Vfile - A IEEE 1364-2001 compliant Verilog HDL file that contains netlist
information obtained from the input design files. This file is a simulation model. It
cannot be synthesized, and can only be used for simulation.

e VHD file - A VHDL IEEE 1076.4 VITAL-2000 compliant VHDL file that contains
netlist information obtained from the input design files. This file is a simulation
model. It cannot be synthesized, and can only be used for simulation.

Syntax for NetGen Functional Simulation
The following command runs the NetGen Functional Simulation flow:

netgen -ofmt [verilog|vhdl] [options] input_file[.ngd]-ngc]

-ofmt specifies the output netlist format (verilog or vhdl).

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 53

Chapter 4:

NetGen

& XILINXe

options is one or more of the options listed in the Options for NetGen Simulation
Flow section. In addition to common options, this section also contains Verilog and
VHDL-specific options.

input_file

NetGen Timing Simulation Flow

This section describes the NetGen Timing Simulation flow, which is used for timing
verification on FPGA and CPLD designs. For FPGA designs, timing simulation is done
after PAR, but may also be done after MAP if only component delay and no route
delay information is needed. When performing timing simulation, you must specify
the type of netlist you want to create: Verilog or VHDL. In addition to the specified
netlist, NetGen also creates an SDF file as output. The output Verilog and VHDL netlists
contain the functionality of the design and the SDF file contains the timing information
for the design.

Input file types depend on whether you are using an FPGA or CPLD design. Please refer
to FPGA Timing Simulation and CPLD Timing Simulation below for design-specific
information, including input file types.

FPGA Timing Simulation

You can verify the timing of an FPGA design using the NetGen Timing Simulation flow
to generate a Verilog or VHDL netlist and an SDF file. The figure below illustrates the
NetGen Timing Simulation flow using an FPGA design.

l D) (P l t ELF]
etGen
VN HD SImpnm
lelary

Simulation Tool

The FPGA Timing Simulation flow uses the following files as input:

* NCD - This physical design file may be mapped only, partially or fully placed, or
partially or fully routed.

* PCF (optional) - This is a physical constraints file. If prorated voltage or temperature
is applied to the design, the PCF must be included to pass this information to
NetGen. See -pcf (PCF File) for more information.

* ELF (MEM) (optional) - This file populates the Block RAMs specified in the . bmm
file. See -bd (Block RAM Data File) for more information.

The FPGA Timing Simulation flow creates the following output files:

¢ SDF file - This SDF 3.0 compliant standard delay format file contains delays
obtained from the input design files.

e Vfile - This is a IEEE 1364-2001 compliant Verilog HDL file that contains the netlist
information obtained from the input design files. This file is a simulation model. It
cannot be synthesized, and can only be used for simulation.

e VHD file - This VHDL IEEE 1076.4 VITAL-2000 compliant VHDL file contains the
netlist information obtained from the input design files. This file is a simulation
model. It cannot be synthesized, and can only be used for simulation.

54

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

CPLD Timing Simulation

You can use the NetGen Timing Simulation flow to verify the timing of a CPLD design
after it is implemented using CPLDFit and the delays are annotated using the -tsim
option. The input file is the annotated NGA file from the TSIM program.

NGA

| NetGen l

l -

| Simulation Tool ‘

Xx9082

Note See the CPLDFit chapter and the TSIM chapter for additional information.
The CPLD Timing Simulation flow uses the following files as input:

NGA file - This native generic annotated file is a logical design file from TSIM that
contains Xilinx® primitives. See the TSIM chapter for additional information.

The NetGen Simulation Flow creates the following output files:

* SDF file - A standard delay format file that contains delays obtained from the input
NGA file.

eV file - An IEEE 1364-2001 compliant Verilog HDL file that contains netlist
information obtained from the input NGA file. This file is a simulation model. It
cannot be synthesized, and can only be used for simulation.

e VHD file - A VHDL IEEE 1076.4 VITAL-2000 compliant VHDL file that contains
netlist information obtained from the input NGA file. This file is a simulation model.
It cannot be synthesized, and can only be used for simulation.

Syntax for NetGen Timing Simulation Flow

The following command runs the NetGen Timing Simulation flow:
netgen -sim -ofmt [verilog|vhdl] [options] input _file[.ncd]

verilog or vhdl is the output netlist format that you specify with the required -ofmt
option.

options is one or more of the options listed in the Options for NetGen Simulation Flow
section. In addition to common options, this section also contains Verilog and VHDL-
specific options.

input_file is the input file name.

To get help on the command line for NetGen Timing Simulation commands, type
netgen -h sim.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 55

Chapter 4: NetGen £ XILINX:

Options for NetGen Simulation Flow

This section describes the supported NetGen command line options for timing
simulation.

e -aka (Write Also-Known-As Names as Comments)
e -bd (Block RAM Data File)

* -bx (Block RAM Init Files Directory)

¢ -dir (Directory Name)

¢ -fn (Control Flattening a Netlist)

* -gp (Bring Out Global Reset Net as Port)

* -insert_pp_buffers (Insert Path Pulse Buffers)
e -intstyle (Integration Style)

e -mhf (Multiple Hierarchical Files)

e -ofmt (Output Format)

e -pcf (PCF File)

* -5 (Speed)

¢ -sim (Generate Simulation Netlist)

* -tb (Generate Testbench Template File)

¢ -ti (Top Instance Name)

s -tp (Bring Out Global 3-State Net as Port)

* -w (Overwrite Existing Files)

-aka (Write Also-Known-As Names as Comments)

This option includes original user-defined identifiers as comments in the netlist. This
option is useful if user-defined identifiers are changed because of name legalization
processes in NetGen.

Syntax

-aka

-bd (Block RAM Data File)

This option specifies the path and file name of the file used to populate the Block RAM
instances specified in the .bmm file. Data2MEM can determine the ADDRESS_BLOCK in
which to place the data from address and data information in the . el ¥ (from EDK) or
-mem file. You can include more than one instance of -bd.

Optionally, you can specify tag tagname, in which case only the address spaces with
the same name in the . bmm file are used for translation, and data outside of the tagname
address spaces are ignored.

Syntax

-bd filename[.elf]|.mem] [tag tagnhame]

-bx (Block RAM Init Files Directory)

This option specifies the directory into which the Block RAM Initialization files will
be written.

Syntax
-bx bram_output_dir

Command Line Tools User Guide
56 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

-dir (Directory Name)
This option specifies the directory for the output files.

Syntax

-dir directory_name

-fn (Control Flattening a Netlist)
This option outputs a flattened netlist. A flat netlist does not include any design
hierarchy.
Syntax
-fn

-gp (Bring Out Global Reset Net as Port)

This option causes NetGen to bring out the global reset signal (which is connected to all
flip-flops and latches in the physical design) as a port on the top-level design module.
Specifying the port name allows you to match the port name you used in the front end.

This option is used only if the global reset net is not driven. For example, if you include
a STARTUP_VIRTEXS5 component in a Virtex®-5 design, you should not enter the -gp
option because the STARTUP_VIRTEXS5 component drives the global reset net.

Syntax

-gp port_name

Note Do not use GR, GSR, PRLD, PRELOAD, or RESET as port names, because these
are reserved names in the Xilinx® software. This option is ignored by UNISIM-based
flows, which use an NGC file as input.

-insert_pp_buffers (Insert Path Pulse Buffers)

This option controls whether path pulse buffers are inserted into the output netlist to
eliminate pulse swallowing. Pulse swallowing is seen on signals in back-annotated
timing simulations when the pulse width is shorter than the delay on the input port
of the component. For example, if a clock of period 5 ns (2.5 ns high/2.5 ns low) is
propagated through a buffer, but in the SDF, the PORT or IOPATH delay for the input
port of that buffer is greater than 2.5 ns, the output will be unchanged in the waveform
window (e.g., if the output was "X" at the start of simulation, it will remain at "X").

Note This option is available when the input is an NCD file.

Syntax
-insert_pp_buffers true|false

By default this command is set to false.

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax

-intstyle ise|xflow]|silent

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 57

Chapter 4: NetGen

& XILINXe

When using —intstyle, one of three modes must be specified:

e —intstyle ise indicates the program is being run as part of an integrated design
environment.

e -intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e —intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

-mhf (Multiple Hierarchical Files)

This option is used to write multiple hierarchical files. One hierarchical file will be
written for each module that has the KEEP_HIERARCHY attribute.

Note See Preserving and Writing Hierarchy Files for additional information.

Syntax
-mhf

-ofmt (Output Format)

This is a required option that specifies the output format for netlists (either Verilog
or VHDL).

Syntax
-ofmt verilog]vhdl

-pcf (PCF File)

This option lets you specify a Physical Constraints File (PCF) as input to NetGen. You
only need to specify a PCF file if you use prorating constraints (temperature and/or
voltage).

Temperature and voltage constraints and prorated delays are described in the Constraints
Guide.

Syntax

-pcF pcf_file._pcf

-s (Change Speed)

This option instructs NetGen to annotate the device speed grade you specify to the
netlist.

Syntax
-s speed grade|min

speed grade can be entered with or without the leading dash. For example, both -s 3
and -s -3 are allowed.

Some architectures support the -s min option, which instructs NetGen to annotate

a process minimum delay, rather than a maximum worst-case to the netlist. Use the
Speedprint or PARTGen utility programs in the software to determine whether process
minimum delays are available for your target architecture. See the PARTGen chapter for
additional information.

58

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

Settings made with this option override prorated timing parameters in the Physical
Constraints File (PCF). If you use-s min, all fields in the resulting SDF file
(MIN:TYP:MAX) are set to the process minimum value.

-sim (Generate Simulation Netlist)
This option writes a simulation netlist. This is the default option for NetGen, and the
default option for NetGen for generating a simulation netlist.
Syntax

-sim

-tb (Generate Testbench Template File)

This option generates a testbench file with a . tv extension for verilog, and . tvhd
extension for vhd. It is a ready-to-use Verilog or VHDL template file, based on the input
NCD file. The type of template file (Verilog or VHDL) is specified with the —ofmt option.
Syntax

-tb

-ti (Top Instance Name)
This option specifies a user instance name for the design under test in the testbench
file created with the —tb option.
Syntax

-ti top_instance_name

-tp (Bring Out Global 3-State Net as Port)

This option causes NetGen to bring out the global 3-state signal (which forces all FPGA
outputs to the high-impedance state) as a port on the top-level design module or
output file. Specifying the port name allows you to match the port name you used in
the front-end.

This option is only used if the global 3-state net is not driven.

Note Do not use the name of any wire or port that already exists in the design, because
this causes NetGen to issue an error. This option is ignored in UNISIM-based flows,
which use an NGC file as input.

Syntax

-tp port_name

-w (Overwrite Existing Files)

This option causes NetGen to overwrite the netlist (. vhd or .v) file if it exists. By
default, NetGen does not overwrite the netlist file.

Note All other output files are automatically overwritten.

Syntax

-W

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 59

Chapter 4: NetGen £ XILINX:

Verilog-Specific Options for Functional and Timing Simulation
This section describes the Verilog-specific command line options for timing simulation.
e -insert_glbl (Insert glbl.v Module)
¢ -ism (Include SimPrim Modules in Verilog File)
¢ -ne (No Name Escaping)
* -pf (Generate PIN File)
e -sdf_anno (Include $sdf_annotate)
e -sdf_path (Full Path to SDF File)
e -shm (Write $shm Statements in Test Fixture File)
e -ul (Write uselib Directive)

¢ -ved (Write $dump Statements In Test Fixture File)

-insert_glbl (Insert glbl.v Module)

This option tells NetGen to include the glbl . v module in the output Verilog simulation
netlist.

Syntax
—-insert_glbl [true|false]
The default value of this option is true.

If you set this option to false, the output Verilog netlist will not contain the glbl .v
module. For more information on glbl . v, see the Synthesis and Simulation Design Guide

Note If the -mh¥ (multiple hierarchical files) option is used, ~insert_glbl cannot
be set to true.

-ism (Include SIMPRIM Modules in Verilog File)

This option includes SIMPRIM modules from the SIMPRIM library in the output Verilog
(-v) file. This option lets you avoid specifying the library path during simulation, but
increases the size of your netlist file and your compile time.

When you use this option, NetGen checks that your library path is set up properly.
Following is an example of the appropriate path:

$XILINX/verilog/src/simprim

If you are using compiled libraries, this switch offers no advantage. If you use this
switch, do not use the —ul switch.

Note The -ism option is valid for post-translate (NGD), post-map, and post-place and
route simulation flows.
Syntax

—-ism

-ne (No Name Escaping)

This option replaces invalid characters with underscores, so that name escaping does
not occur. For example, the net name “p1$40/empty” becomes “p1$40_empty” when
you do not use name escaping. The leading backslash does not appear as part of the
identifier. The resulting Verilog file can be used if a vendor’s Verilog software cannot
interpret escaped identifiers correctly.

Command Line Tools User Guide
60 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

Syntax
-ne

By default (without the -ne option), NetGen “escapes” illegal block or net names in your
design by placing a leading backslash (\) before the name and appending a space at the
end of the name. For example, the net name “p1$40/empty” becomes “\ p1$40/empty

” when name escaping is used. Illegal Verilog characters are reserved Verilog names,
such as “input” and “output,” and any characters that do not conform to Verilog naming
standards.

-pf (Generate PIN File)
This option tells NetGen to generate a PIN file.
This option is available for FPGA/Cadence only.

Syntax
_pf

-sdf_anno (Include $sdf_annotate)

This option controls the inclusion of the $sdf_annotate construct in a Verilog netlist. The
default for this option is true. To disable this option, use false.

Note The -sdf_anno option is valid for the timing simulation flow.

Syntax
-sdf _anno [true|false]

-sdf_path (Full Path to SDF File)

This option outputs the SDF file to the specified full path. This option writes the
full path and the SDF file name to the $sdf_annotate statement. If a full path is not
specified, it writes the full path of the current work directory and the SDF file name
to the $sdf_annotate statement.

Note The -sdf_path option is valid for the timing simulation flow.

Syntax
-sdf _path [path_name]

-shm (Write $shm Statements in Test Fixture File)

This option places $shm statements in the structural Verilog file created by NetGen.
These $shm statements allow NC-Verilog to display simulation data as waveforms. This
option is for use with Cadence NC-Verilog files only.

Syntax

-shm

-ul (Write uselib Directive)

This option causes NetGen to write a library path pointing to the SimPrim library into
the output Verilog (.v) file. The path is written as shown below:

uselib dir=$XILINX/verilog/src/simprims libext=.v
$XILINX is the location of the Xilinx software.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 61

Chapter 4: NetGen

& XILINXe

If you do not enter a —ul option, the ‘uselib line is not written into the Verilog file.

Note A blank ‘uselib statement is automatically appended to the end of the Verilog file
to clear out the “uselib data. If you use this option, do not use the -ism option.

Note The —ul option is valid for SIMPRIM-based functional simulation and timing
simulation flows; although not all simulators support the ‘uselib directive. Xilinx
recommends using this option with caution.

Syntax

-ul

-vcd (Write $dump Statements In Test Fixture File)

This option writes $dumpfile/$dumpvars statements in testfixture. This option is for use
with Cadence Verilog files only.

Syntax
-vcd

VHDL-Specific Options for Functional and Timing Simulation

This section describes the VHDL-specific command line options for timing simulation.
* -a (Architecture Only)

e -ar (Rename Architecture Name)

e -extid (Extended Identifiers)

e -rpw (Specify the Pulse Width for ROC)

* -tpw (Specify the Pulse Width for TOC)

-a (Architecture Only)

This option suppresses generation of entities in the output. When specified, only
architectures appear in the output. By default, NetGen generates both entities and
architectures for the input design.

Syntax

-a

-ar (Rename Architecture Name)

This option lets you change the architecture name generated by NetGen. The default
architecture name for each entity in the netlist is STRUCTURE.

Syntax

-ar architecture_name

-extid (Extended ldentifiers)

This option instructs NetGen to write VHDL extended identifiers. There are two types
of identifiers: basic and extended. By default, NetGen writes basic identifiers only.

Syntax
-extid

62

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 4: NetGen

-rpw (Specify the Pulse Width for ROC)

This option specifies the pulse width, in nanoseconds, for the ROC component. You
must specify a positive integer to simulate the component. This option is not required.
By default, the ROC pulse width is set to 100 ns.

Syntax

-rpw roc_pulse_width

-tpw (Specify the Pulse Width for TOC)

This option specifies the pulse width, in nanoseconds, for the TOC component. You
must specify a positive integer to simulate the component. This option is required when
you instantiate the TOC component (for example, when the global set/reset and global
3-State nets are sourceless in the design).

Syntax
-tpw toc_pulse_width

NetGen Equivalence Checking Flow

This section describes the NetGen Equivalence Checking flow, which is used for formal
verification of FPGA designs. This flow creates a Verilog netlist and conformal or
formality assertion file for use with supported equivalence checking tools.

Post-NGDBuild Flow for FPGAs

NGD

NetGen

-
Formal
Lirary

| Formal Verification Tool

X10008

Post-Implementation Flow for FPGAs

(_EL_F-‘I NCD NGM
= ﬂlz) ﬁ’:)
]

l NetGen |

)
(sVFVXC) v Formal
Library

[Formal Verification Tool |

H10034

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 63

Chapter 4: NetGen £ XILINX:

Input files for NetGen Equivalence Checking

The NetGen Equivalence Checking flow uses the following files as input:
* NGD file - This file is a logical description of an unmapped FPGA design.

* NCD file - This physical design file may be mapped only, partially or fully placed,
or partially or fully routed.

* NGM file - This mapped design file is generated by MAP and contains information
on what was trimmed and transformed during the MAP process. See -ngm (Design
Correlation File) for more information.

* ELF (MEM) (optional) - This file is used to populate the Block RAMs specified in the
-bmm file. See -bd (Block RAM Data File) for more information.

Output files for NetGen Equivalence Checking

The NetGen Equivalence Checking flow uses the following files as output:

® Verilog (.v) file - An IEEE 1364-2001 compliant Verilog HDL file that contains the
netlist information obtained from the input file. This file is an equivalence checking
model and cannot be synthesized or used in any other manner than equivalence
checking.

* Formality (.svf) file - An assertion file written for the Formality equivalence
checking tool. This file provides information about some of the transformations that
a design went through, after it was processed by Xilinx implementation tools.

* Conformal-LEC (.vxc) file - An assertion file written for the Conformal-LEC
equivalence checking tool. This file provides information about some of the
transformations that a design went through, after it was processed by Xilinx
implementation tools.

Note For specific information on Conformal-LEC and Formality tools, please refer to
the Synthesis and Simulation Design Guide.

Syntax for NetGen Equivalence Checking

The following command runs the NetGen Equivalence Checking flow:
netgen -ecn [tool_name] [options] input_file[.ncd].ngd] ngm_Ffile

options is one or more of the options listed in the Options for NetGen Equivalence
Checking Flow section.

tool_name is a required switch that generates a netlist compatible with equivalence
checking tools. Valid tool_name arguments are conformal or formality. For
additional information on equivalence checking and formal verification tools, please
refer to the Synthesis and Simulation Design Guide.

input_file is the input file name. If an NGD file is used, the .ngd extension must be
specified.

ngm_file (optional, but recommended) is the input file name, which is a design file,
produced by MAP, that contains information about what was trimmed and transformed
during the MAP process.

To get help on the command line for NetGen Equivalence Checking commands, type
netgen -h ecn.

Command Line Tools User Guide
64 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

Options for NetGen Equivalence Checking Flow

This section describes the supported NetGen command line options for equivalence
checking.

e -aka (Write Also-Known-As Names as Comments)
* -bd (Block RAM Data File)

* -bx (Block RAM Init File Directory)

e dir (Directory Name)

¢ -ecn (Equivalence Checking)

e -fn (Control Flattening a Netlist)

e -intstyle (Integration Style)

e -mhf (Multiple Hierarchical Files)

¢ -ne (No Name Escaping)

* -ngm (Design Correlation File)

* -w (Overwrite Existing Files)

-aka (Write Also-Known-As Names as Comments)

This option includes original user-defined identifiers as comments in the netlist. This
option is useful if user-defined identifiers are changed because of name legalization
processes in NetGen.

Syntax

-aka

-bd (Block RAM Data File)

This option specifies the path and file name of the file used to populate the Block RAM
instances specified in the . bmm file. Data2MEM can determine the ADDRESS_BLOCK in
which to place the data from address and data information in the . el ¥ (from EDK) or
-mem file. You can include more than one instance of -bd.

Optionally, you can specify tag tagname, in which case only the address spaces with
the same name in the .bmm file are used for translation, and data outside of the tagname
address spaces are ignored.

Syntax
-bd filename[.elf].mem] [tag tagnhame]

-dir (Directory Name)
This option specifies the directory for the output files.

Syntax

-dir directory_nhame

-ecn (Equivalence Checking)

This option generates an equivalence checking netlist to use in formal verification of an
FPGA design.

For additional information on equivalence checking and formal verification tools, please
refer to the Synthesis and Simulation Design Guide.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 65

Chapter 4: NetGen

& XILINXe

Syntax
netgen -ecn tool_name

tool_name is the name of the tool for which to output the netlist. Valid tool names are
conformal and formality.

-fn (Control Flattening a Netlist)

This option outputs a flattened netlist. A flat netlist does not include any design
hierarchy.

Syntax
-fn

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax
-intstyle ise|xflow|silent
When using —intstyle, one of three modes must be specified:

e -intstyle ise indicates the program is being run as part of an integrated design
environment.

e -intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e -intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

-mhf (Multiple Hierarchical Files)

This option is used to write multiple hierarchical files. One hierarchical file will be
written for each module that has the KEEP_HIERARCHY attribute.

Note See Preserving and Writing Hierarchy Files for additional information.

Syntax
-mh¥

-ne (No Name Escaping)

This option replaces invalid characters with underscores, so that name escaping does
not occur. For example, the net name “p1$40/empty” becomes “p1$40_empty” when
you do not use name escaping. The leading backslash does not appear as part of the
identifier. The resulting Verilog file can be used if a vendor’s Verilog software cannot
interpret escaped identifiers correctly.

Syntax

-ne

66

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

By default (without the -ne option), NetGen “escapes” illegal block or net names in your
design by placing a leading backslash (\) before the name and appending a space at the
end of the name. For example, the net name “p1$40/empty” becomes “\ p1$40/empty

” when name escaping is used. Illegal Verilog characters are reserved Verilog names,
such as “input” and “output,” and any characters that do not conform to Verilog naming
standards.

-ngm (Design Correlation File)

This option is used to specify an NGM design correlation file. This option is used for
equivalence checking flows.

Syntax
-ngm [ngm_*File]

-w (Overwrite Existing Files)

This option causes NetGen to overwrite the netlist (.vhd or .v) file if it exists. By
default, NetGen does not overwrite the netlist file.

Note All other output files are automatically overwritten.

Syntax

-W

NetGen Static Timing Analysis Flow

This section describes the NetGen Static Timing Analysis flow, which is used for
analyzing the timing, including minimum of maximum delay values, of FPGA designs.

Minimum of maximum delays are used by static timing analysis tools to calculate
skew, setup and hold values. Minimum of maximum delays are the minimum delay
values of a device under a specified operating condition (speed grade, temperature and
voltage). If the operating temperature and voltage are not specified, then the worst case
temperature and voltage values are used. Note that the minimum of maximum delay
value is different from the process minimum generated by using the -s min option.

The following example shows DELAY properties containing relative minimum and
maximum delays.

(DELAY)

(ABSOLUTE)

(PORT 1 (234:292:292) (234:292:292))
(10PATH 1 0 (392:489:489) (392:489:489))

Note Both the TYP and MAX fields contain the maximum delay.

Note Timing simulation does not contain any relative delay information, instead the
MIN, TYP, and MAX fields are all equal.

NetGen uses the Static Timing Analysis flow to generate Verilog and SDF netlists
compatible with supported static timing analysis tools.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 67

Chapter 4: NetGen £ XILINX:

Static Timing Analysis Flow for FPGAs

(neD) (PCcF)

l NetGen |

(wisDF) STA
Library

| Static Timing Analysis Tool |

X10252

Input files for Static Timing Analysis

The Static Timing Analysis flow uses the following files as input:

* NCD file - This physical design file may be mapped only, partially or fully placed,
or partially or fully routed.

* PCF (optional) - This is a physical constraints file. If prorated voltage and
temperature is applied to the design, the PCF file must be included to pass this
information to NetGen. See -pcf (PCF File) for more information.

Output files for Static Timing Analysis

The Static Timing Analysis flow uses the following files as output:

* SDF file - This SDF 3.0 compliant standard delay format file contains delays
obtained from the input file.

¢ Verilog (.v) file - An IEEE 1364-2001 compliant Verilog HDL file that contains netlist
information obtained from the input file. This file is a timing simulation model
and cannot be synthesized or used in any manner other than for static timing
analysis. This netlist uses simulation primitives, which may not represent the
true implementation of the device. The netlist represents a functional model of
the implemented design.

Syntax for NetGen Static Timing Analysis

The following command runs the NetGen Static Timing Analysis flow:
netgen -sta input_Ffile[.ncd]
input_file is the input file name.

To get help on the command line for static timing analysis, type netgen -h sta.

Command Line Tools User Guide
68 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

Options for NetGen Static Timing Analysis Flow

This section describes the supported NetGen command line options for static timing
analysis.

e -aka (Write Also-Known-As Names as Comments)
e -bd (Block RAM Data File)

* -bx (Block RAM Init File Directory)

e -dir (Directory Name)

e -fn (Control Flattening a Netlist)

* -intstyle (Integration Style)

e -mhf (Multiple Hierarchical Files)

* -ne (No Name Escaping)

e -pcf (PCF File)

* -s (Change Speed)

e -sta (Generate Static Timing Analysis Netlist)
* -w (Overwrite Existing Files)

-aka (Write Also-Known-As Names as Comments)

This option includes original user-defined identifiers as comments in the netlist. This
option is useful if user-defined identifiers are changed because of name legalization
processes in NetGen.

Syntax

-aka

-bd (Block RAM Data File)

This option specifies the path and file name of the file used to populate the Block RAM
instances specified in the .bmm file. Data2MEM can determine the ADDRESS_BLOCK in
which to place the data from address and data information in the . el ¥ (from EDK) or
-mem file. You can include more than one instance of -bd.

Optionally, you can specify tag tagname, in which case only the address spaces with
the same name in the .bmm file are used for translation, and data outside of the tagname
address spaces are ignored.

Syntax
-bd filename[.elf|.mem] [tag tagname]

-dir (Directory Name)
This option specifies the directory for the output files.

Syntax

-dir directory_name

-fn (Control Flattening a Netlist)

This option outputs a flattened netlist. A flat netlist does not include any design
hierarchy.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 69

Chapter 4: NetGen £ XILINX:

Syntax
-fn

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax
-intstyle ise|xflow|silent

When using —intstyle, one of three modes must be specified:

e -—intstyle ise indicates the program is being run as part of an integrated design
environment.

¢ -intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e —intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

-mhf (Multiple Hierarchical Files)

This option is used to write multiple hierarchical files. One hierarchical file will be
written for each module that has the KEEP_HIERARCHY attribute.

Note See Preserving and Writing Hierarchy Files for additional information.

Syntax
-mhf

-ne (No Name Escaping)

This option replaces invalid characters with underscores, so that name escaping does
not occur. For example, the net name “p1$40/empty” becomes “p1$40_empty” when
you do not use name escaping. The leading backslash does not appear as part of the
identifier. The resulting Verilog file can be used if a vendor’s Verilog software cannot
interpret escaped identifiers correctly.

Syntax
-ne

By default (without the -ne option), NetGen “escapes” illegal block or net names in your
design by placing a leading backslash (\) before the name and appending a space at the
end of the name. For example, the net name “p1$40/empty” becomes “\ p1$40/empty

” when name escaping is used. Illegal Verilog characters are reserved Verilog names,
such as “input” and “output,” and any characters that do not conform to Verilog naming
standards.

-pcf (PCF File)

This option lets you specify a Physical Constraints File (PCF) as input to NetGen. You
only need to specify a PCF file if you use prorating constraints (temperature and/or
voltage).

Temperature and voltage constraints and prorated delays are described in the Constraints
Guide.

Command Line Tools User Guide
70 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

Syntax
-pcF pcf_file._pcf

-s (Change Speed)

This option instructs NetGen to annotate the device speed grade you specify to the
netlist.

Syntax
-s speed grade|min

speed grade can be entered with or without the leading dash. For example, both -s 3
and -s -3 are allowed.

Some architectures support the -s min option, which instructs NetGen to annotate

a process minimum delay, rather than a maximum worst-case to the netlist. Use the
Speedprint or PARTGen utility programs in the software to determine whether process
minimum delays are available for your target architecture. See the PARTGen chapter for
additional information.

Settings made with this option override prorated timing parameters in the Physical
Constraints File (PCF). If you use-s min, all fields in the resulting SDF file
(MIN:TYP:MAX) are set to the process minimum value.

-sta (Generate Static Timing Analysis Netlist)

This option writes a static timing analysis netlist.

Syntax
-sta

-w (Overwrite Existing Files)

This option causes NetGen to overwrite the netlist (. vhd or .v) file if it exists. By
default, NetGen does not overwrite the netlist file.

Note All other output files are automatically overwritten.

Syntax

-W

Preserving and Writing Hierarchy Files

When hierarchy is preserved during synthesis and implementation using the
KEEP_HIERARCHY constraint, the NetGen -mhf option writes separate netlists and
SDF files (if applicable) for each piece of hierarchy.

The hierarchy of STARTUP and glbl (Verilog only) modules is preserved in the output
netlist. If the -mhf option is used and there is at least one hierarchical block with the
KEEP_HIERARCHY constraint in the design, NetGen writes out a separate netlist file
for the STARTUP and glbl modules. If there is no block with the KEEP_HIERARCHY
constraint, the -mhf option is ignored even if there are STARTUP and glbl modules

in the design.

This section describes the output file types produced with the -mhf option. The type of
netlist output by NetGen depends on whether you are running the NetGen simulation,
equivalence checking, or static timing analysis flow. For simulation, NetGen outputs a
Verilog or VHDL file. The -ofmt option must be used to specify the output file type you
wish to produce when you are running the NetGen simulation flow.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 71

Chapter 4:

& XILINXe

Note When Verilog is specified, the $sdf_annotate is included in the Verilog netlist for
each module.

The following table lists the base naming convention for hierarchy output files:

Hierarchy File Content

Hierarchy File Equivalence Static Timing
Content Simulation Checking Analysis
File with Top-level [input_filename) [input_filename].ecn, [input_filename].sta, or
Module (default), or user or user specified .
specified output output filename user specified output
filename filename
File with Lower Level | [module_name].sim [module_name].ecn [module_name].sta

Module

The [module_name] is the name of the hierarchical module from the front-end that the user
is already familiar with. There are cases when the [module_name] could differ, they are:

e If multiple instances of a module are used in the design, then each instantiation of
the module is unique because the timing for the module is different. The names are
made unique by appending an underscore followed by a INST_ string and a count
value (e.g., numgen, numgen_INST_1, numgen_INST_2).

* If a new filename clashes with an existing filename within the name scope, then the
new name will be [module_name]_[instance_name].

Testbench File

A testbench file is created for the top-level design when the -tb option is used. The
base name of the testbench file is the same as the base name of the design, with a . tv
extension for Verilog, and a . tvhd extension for VHDL.

Hierarchy Information File

In addition to writing separate netlists, NetGen also generates a separate text file
containing hierarchy information. The following information appears in the hierarchy
text file. NONE appears if one of the files does not have relative information.

// Module : The name of the hierarchical design module.

// Instance : The instance name used in the parent module.

// Design File : The name of the file that contains the module.
// SDF File : The SDF file associated with the module.

// SubModule : The sub module(s) contained within a given module.
// Module, Instance : The sub module and instance names.

Note The hierarchy information file for a top-level design does not contain an Instance
field.

The base name of the hierarchy information file is: design_base_name_mhf_info.txt

The STARTUP block is only supported on the top-level design module. The global set
reset (GSR) and global tristate signal (GTS) connectivity of the design is maintained
as described in the Dedicated Global Signals in Back-Annotation Simulation section
of this chapter.

72

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 4: NetGen

Dedicated Global Signals in Back-Annotation Simulation

The global set reset (GSR), PRLD for CPLDs, signal and global tristate signal (GTS) are
global routing nets present in the design that provide a means of setting, resetting, or
tristating applicable components in the device. The simulation behavior of these signals
is modeled in the library cells of the Xilinx SIMPRIM library and the simulation netlist
using the glbl module in Verilog and the X_ROC / X_TOC components in VHDL.

The following sections explain the connectivity for Verilog and VHDL netlists.

Global Signals in Verilog Netlist

For Verilog, the glbl module is used to model the default behavior of GSR and GTS. The
glbl.GSR and glbl.GTS can be directly referenced as global GSR/GTS signals anywhere
in a design or in any library cells.

NetGen writes out the glbl module definition in the output Verilog netlist. For a
non-hierarchical design or a single-file hierarchical design, this glbl module definition

is written at the bottom of the netlist. For a single-file hierarchical design, the glbl
module is defined inside the top-most module. For a multi-file hierarchical design (-mh¥
option), NetGen writes out glbl.v as a hierarchical module.

If the GSR and GTS are brought out to the top-level design as ports using the -gp and
—tp options, the top-most module has the following connectivity:

glbl .GSR = GSR_PORT
glbl.GTS = GTS_PORT

The GSR_PORT and GTS_PORT are ports on the top-level module created with the
-gp and -tp options. If you use a STARTUP block in the design, the STARTUP block

is translated to buffers that preserve the intended connectivity of the user-controlled
signals to the global GSR and GTS (glbl. GSR and glbl.GTS).

When there is a STARTUP block in the design, the STARTUP block hierarchical level
is always preserved in the output netlist. The output of STARTUP is connected to the
global GSR/GTS signals (glbl.GSR and glbl.GTS).

For all hierarchical designs, the glbl module must be compiled and referenced along
with the design. For information on setting the GSR and GTS for FPGAs, see the
Synthesis and Simulation Design Guide.

Global Signals in VHDL Netlist

Global signals for VHDL netlists are GSR and GTS, which are declared in the library
package Simprim_Vcomponents.vhd. The GSR and GTS can be directly referenced
anywhere in a design or in any library cells.

The X_ROC and X_TOC components in the VHDL library model the default behavior of
the GSR and GTS. If the —-gp and —tp options are not used, NetGen instantiates X_ROC
and X_TOC in the output netlist. Each design has only one instance of X_ROC and
X_TOC. For hierarchical designs, X_ROC and X_TOC are instantiated in the top-most
module netlist.

X_ROC and X_TOC are instantiated as shown below:

X _ROC (O => GSR);
X_TOC (O => GTS);.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 73

Chapter 4: NetGen £ XILINX:

If the GSR and GTS are brought out to the top-level design using the -gp and -tp
options, there will be no X_ROC or X_TOC instantiation in the design netlist. Instead,
the top-most module has the following connectivity:

GSR<= GSR_PORT
GTS<= GTS_PORT

The GSR_PORT and GTS_PORT are ports on the top-level module created with the
-gp and -tp options.

When there is a STARTUP block in the design, the STARTUP block hierarchical level
is preserved in the output netlist. The output of STARTUP is connected to the global
GSR and GTS signals.

For information on setting GSR and GTS for FPGAs, see the Synthesis and Simulation
Design Guide.

Command Line Tools User Guide
74 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 5

Logical Design Rule Check (DRC)

This chapter describes the Logical Design Rule Check (DRC). This chapter contains the
following sections:

¢ Logical DRC Overview
* Logical DRC Checks

Logical DRC Overview

The Logical Design Rule Check (DRC), also known as the NGD DRC, comprises a series
of tests to verify the logical design in the Native Generic Database (NGD) file. The
Logical DRC performs device-independent checks.

The Logical DRC generates messages to show the status of the tests performed.
Messages can be error messages (for conditions where the logic will not operate
correctly) or warnings (for conditions where the logic is incomplete).

The Logical DRC runs automatically at the following times:
e At the end of NGDBuild, before NGDBuild writes out the NGD file

NGDBuild writes out the NGD file if DRC warnings are discovered, but does not
write out an NGD file if DRC errors are discovered.

* At the end of NetGen, before writing out the netlist file

The netlist writer (NetGen) does not perform the entire DRC. It only performs the
Net checks and Name checks. The netlist writer writes out a netlist file even if DRC
warnings or errors are discovered.

Logical DRC Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

e Virtex®-4, Virtex-5, and Virtex-6

¢ CoolRunner™ XPLA3 and CoolRunner-II

e XC9500 and XC9500XL

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 75

Chapter 5: Logical Design Rule Check (DRC) & XILINX:

Logical DRC Checks

The Logical DRC performs the following types of checks:
* Block check

* Net check

* Pad check

* Clock buffer check

¢ Name check

* Primitive pin check

Block Check

The block check verifies that each terminal symbol in the NGD hierarchy (that is, each
symbol that is not resolved to any lower-level components) is an NGD primitive. A
block check failure is treated as an error. As part of the block check, the DRC also
checks user-defined properties on symbols and the values on the properties to make
sure they are legal.

Net Check

The net check determines the number of NGD primitive output pins (drivers), 3-state
pins (drivers), and input pins (loads) on each signal in the design. If a signal does
not have at least one driver (or one 3-state driver) and at least one load, a warning is
generated. An error is generated if a signal has multiple non-3-state drivers or any
combination of 3-state and non-3-state drivers. As part of the net check, the DRC also
checks user-defined properties on signals and the values on the properties to make
sure they are legal.

76

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 5: Logical Design Rule Check (DRC)

Pad Check

The pad check verifies that each signal connected to pad primitives obeys the following

rules.

If the PAD is an input pad, the signal to which it is connected can only be connected
to the following types of primitives:

Buffers

Clock buffers
PULLUP
PULLDOWN
KEEPER
BSCAN

The input signal can be attached to multiple primitives, but only one of each of
the above types. For example, the signal can be connected to a buffer primitive,
a clock buffer primitive, and a PULLUP primitive, but it cannot be connected

to a buffer primitive and two clock buffer primitives. Also, the signal cannot

be connected to both a PULLUP primitive and a PULLDOWN primitive. Any
violation of the rules above results in an error, with the exception of signals
attached to multiple pull-ups or pull-downs, which produces a warning. A
signal that is not attached to any of the above types of primitives also produces a
warning.

If the PAD is an output pad, the signal it is attached to can only be connected to
one of the following primitive outputs:

A single buffer primitive output

A single 3-state primitive output

A single BSCAN primitive

In addition, the signal can also be connected to one of the following primitives:
A single PULLUP primitive

A single PULLDOWN primitive

A single KEEPER primitive

Any other primitive output connections on the signal will result in an error.

If the condition above is met, the output PAD signal may also be connected to
one clock buffer primitive input, one buffer primitive input, or both.

Command Line Tools User Guide

UG628 (v 12.1) April 19, 2010

www.Xilinx.com 77

Chapter 5: Logical Design Rule Check (DRC) & XILINX:

If the PAD is a bidirectional or unbonded pad, the signal it is attached to must obey
the rules stated above for input and output pads. Any other primitive connections
on the signal results in an error. The signal connected to the pad must be configured
as both an input and an output signal; if it is not, you receive a warning.

If the signal attached to the pad has a connection to a top-level symbol of the design,
that top-level symbol pin must have the same type as the pad pin, except that output
pads can be associated with 3-state top-level pins. A violation of this rule results

in a warning.

If a signal is connected to multiple pads, an error is generated. If a signal is
connected to multiple top-level pins, a warning is generated.

Clock Buffer Check

The clock buffer configuration check verifies that the output of each clock buffer
primitive is connected to only inverter, flip-flop or latch primitive clock inputs, or other
clock buffer inputs. Violations are treated as warnings.

Name Check

The name check verifies the uniqueness of names on NGD objects using the following
criteria:

Pin names must be unique within a symbol. A violation results in an error.

Instance names must be unique within the instances position in the hierarchy (that
is, a symbol cannot have two symbols with the same name under it). A violation
results in a warning.

Signal names must be unique within the signals hierarchical level (that is, if you
push down into a symbol, you cannot have two signals with the same name). A
violation results in a warning.

Global signal names must be unique within the design. A violation results in a
warning.

Primitive Pin Check

The primitive pin check verifies that certain pins on certain primitives are connected
to signals in the design.

78

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 6

NGDBuild

This chapter describes the NGDBuild program. This chapter contains the following
sections:

* NGDBuild Overview
¢ NGDBuild Syntax
¢ NGDBuild Options

NGDBuild Overview

NGDBuild reads in a netlist file in EDIF or NGC format and creates a Xilinx® Native
Generic Database (NGD) file that contains a logical description of the design in terms of
logic elements, such as AND gates, OR gates, LUTs, flip-flops, and RAMs.

The NGD file contains both a logical description of the design reduced to Xilinx
primitives and a description of the original hierarchy expressed in the input netlist. The
output NGD file can be mapped to the desired device family.

The following figure shows a simplified version of the NGDBuild design flow.
NGDBuild invokes other programs that are not shown in the following figure.

NGDBuild Design Flow

——————————————— rTr—————————————="

|

| EDIF200 NCF :: NGC Netlist NCF : URF Bhys ::;ams UCF

| MNetlist Metlist Constraints File I (XST File) Netlist Constraints File | User Aules File VS User Constraints File
| Il

Referenced in Netlist

L | |

Netlist Reader

NGO
Intermediate File
NGD BLD
Generic Database Build Report X10505

NGDBuild

NGDBuild Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

e Virtex®-4, Virtex-5, and Virtex-6

¢ CoolRunner™ XPLA3 and CoolRunner-II

e XC9500 and XC9500XL

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 79

Chapter 6: NGDBuild

& XILINXe

Converting a Netlist to an NGD File

NGDBuild performs the following steps to convert a netlist to an NGD file:
1. Reads the source netlist

NGDBuild invokes the Netlist Launcher. The Netlist Launcher determines the input
netlist type and starts the appropriate netlist reader program. The netlist reader
incorporates NCF files associated with each netlist. NCF files contain timing and
layout constraints for each module. The Netlist Launcher is described in detail in the
Netlist Launcher (Netlister) appendix.

2. Reduces all components in the design to NGD primitives

NGDBuild merges components that reference other files. NGDBuild also finds
the appropriate system library components, physical macros (NMC files), and
behavioral models.

3. Checks the design by running a Logical Design Rule Check (DRC) on the converted
design

Logical DRC is a series of tests on a logical design. It is described in the Logical
Design Rule Check chapter.

4. Writes an NGD file as output

Note This procedure, the Netlist Launcher, and the netlist reader programs are
described in more detail in the Appendix.

NGDBuild Input Files

NGDBuild uses the following files as input:

The input design can be an EDIF 2 0 0 or NGC netlist file. If the input netlist is in another
format recognized by the Netlist Launcher, the Netlist Launcher invokes the program
necessary to convert the netlist to EDIF format and then invokes the appropriate netlist
reader, EDIF2NGD.

With the default Netlist Launcher options, NGDBuild recognizes and processes files
with the extensions shown in the following table. NGDBuild searches the top-level
design netlist directory for a netlist file with one of the extensions. By default, NGDBuild
searches for an EDIF file first.

File Type Recognized Extensions
EDIF .sedif, .edn, .edf, .edif
NGC -hgc

80

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 6: NGDBuild

Remove all out of date netlist files from your directory. Obsolete netlist files may cause
errors in NGDBuild.

* UCEF file - The User Constraints File (UCF) is an ASCII file that you create. You can
create this file by hand or by using the Constraints Editor. See the Help provided
with the Constraints Editor for more information. The UCEF file contains timing and
layout constraints that affect how the logical design is implemented in the target
device. The constraints in the file are added to the information in the output NGD
file. For more information on constraints, see the Constraints Guide.

By default, NGDBuild reads the constraints in the UCF file automatically if the UCF
file has the same base name as the input design file and a . ucT extension. You can
override the default behavior and specify a different constraints file with the -uc
option. See -uc (User Constraints File) for more information.

* NCF - The Netlist Constraints File (NCF) is produced by a CAE vendor toolset. This
file contains constraints specified within the toolset. The netlist reader invoked by
NGDBuild reads the constraints in this file if the NCF has the same name as the
input EDIF or NGC netlist. It adds the constraints to the intermediate NGO file and
the output Native Generic Database (NGD) file. NCF files are read in and annotated
to the NGO file during an edif2ngd conversion. This also implies that unlike UCF
files, NCF constraints only bind to a single netlist; they do not cross file hierarchies.

Note NGDBuild checks to make sure the NGO file is up-to-date and reruns
EDIF2NGD only when the EDIF has a timestamp that is newer than the NGO file.
Updating the NCF has no affect on whether EDIF2NGD is rerun. Therefore, if the
NGO is up-to-date and you only update the NCF file (not the EDIF), use the -nt on
option to force the regeneration of the NGO file from the unchanged EDIF and new
NCF. See -nt (Netlist Translation Type) for more information.

* UREF file - The User Rules File (URF) is an ASCII file that you create. The Netlist
Launcher reads this file to determine the acceptable netlist input files, the netlist
readers that read these files, and the default netlist reader options. This file also
allows you to specify third-party tool commands for processing designs. The URF
can add to or override the rules in the system rules file.

You can specify the location of the URF with the NGDBuild -ur option. The URF
must have a .urf extension. See -ur (Read User Rules File) or User Rules File (URF)
in Appendix B for more information.

* NGC file - This binary file can be used as a top-level design file or as a module file:
Top-level design file.

This file is output by the Xilinx Synthesis Technology (XST) software. See the
description of design files earlier in this section for details.

Note Thisis not a true netlist file. However, it is referred to as a netlist in this context
to differentiate it from the NGC module file. NGC files are equivalent to NGO files
created by EDIF2NGD, but are created by XST and CORE Generator™ software.

* NMLC files - These physical macros are binary files that contain the implementation
of a physical macro instantiated in the design. NGDBuild reads the NMC file to
create a functional simulation model for the macro.

Unless a full path is provided to NGDBuild, it searches for netlist, NCE, NGC, NMC,
and MEM files in the following locations:

¢ The working directory from which NGDBuild was invoked.
* The path specified for the top-level design netlist on the NGDBuild command line.

* Any path specified with the -sd (Search Specified Directory) on the NGDBuild
command line.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 81

Chapter 6: NGDBuild £ XILINX:

NGDBuild Intermediate Files

NGO files - These binary files contain a logical description of the design in terms of its
original components and hierarchy. These files are created when NGDBuild reads the
input EDIF netlist. If these files already exist, NGDBuild reads the existing files. If these
files do not exist or are out of date, NGDBuild creates them.

NGDBuild Output Files

NGDBuild creates the following files as output:

* NGD file - The Native Generic Database (NGD) file is a binary file containing
a logical description of the design in terms of both its original components and
hierarchy and the primitives to which the design is reduced.

e BLD file - This build report file contains information about the NGDBuild run and
about the subprocesses run by NGDBuild. Subprocesses include EDIF2NGD, and
programs specified in the URF. The BLD file has the same root name as the output
NGD file and a .bld extension. The file is written into the same directory as the
output NGD file.

NGDBuild Syntax

ngdbuild [options] design_name [ngd_file[.ngd]]

options can be any number of the NGDBuild command line options listed in NGDBuild
Options. Enter options in any order, preceded them with a dash (minus sign on the
keyboard) and separate them with spaces.

design_name is the top-level name of the design file you want to process. To ensure the
design processes correctly, specify a file extension for the input file, using one of the
legal file extensions specified in Overview section. Using an incorrect or nonexistent file
extension causes NGDBuild to fail without creating an NGD file. If you use an incorrect
file extension, NGDBuild may issue an unexpanded error.

Note If you are using an NGC file as your input design, you should specify the .ngc
extension. If NGDBuild finds an EDIF netlist or NGO file in the project directory, it
does not check for an NGC file.

ngd_file is the output file in NGD format. The output file name, its extension, and its
location are determined as follows:

¢ If you do not specify an output file name, the output file has the same name as
the input file, with an . ngd extension.

e If you specify an output file name with no extension, NGDBuild appends the .ngd
extension to the file name.

e If you specify a file name with an extension other than .ngd, you get an error
message and NGDBuild does not run.

e If the output file already exists, it is overwritten with the new file.

Command Line Tools User Guide
82 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 6: NGDBuild

NGDBuild Options

This section describes the NGDBuild command line options.
* -a(Add PADs to Top-Level Port Signals)
e -aul (Allow Unmatched LOCs)

¢ -aut (Allow Unmatched Timegroups)

* -bm (Specify BMM Files)

* -dd (Destination Directory)

e -f (Execute Commands File)

e -i (Ignore UCF File)

¢ -insert_keep_hierarchy (Insert KEEP_HIERARCHY constraint)
e -intstyle (Integration Style)

e filter (Filter File)

e -] (Libraries to Search)

e -nt (Netlist Translation Type)

* -p (Part Number)

e -quiet (Quiet)

¢ -1 (Ignore LOC Constraints)

¢ -sd (Search Specified Directory)

¢ -u (Allow Unexpanded Blocks)

e -uc (User Constraints File)

e -ur (Read User Rules File)

e -verbose (Report All Messages)

-a (Add PADs to Top-Level Port Signals)

If the top-level input netlist is in EDIF format, this option causes NGDBuild to add a
PAD symbol to every signal that is connected to a port on the root-level cell. This option
has no effect on lower-level netlists.

Syntax
-a

Using the -a option depends on the behavior of your third-party EDIF writer. If your
EDIF writer treats pads as instances (like other library components), do not use —-a. If
your EDIF writer treats pads as hierarchical ports, use —a to infer actual pad symbols. If
you do not use -a where necessary, logic may be improperly removed during mapping.
For EDIF files produced by Mentor Graphics and Cadence schematic tools, the —a option
is set automatically; you do not have to enter —a explicitly for these vendors.

Note The NGDBuild -a option corresponds to the EDIF2ZNGD -a option. If you run
EDIF2NGD on the top-level EDIF netlist separately, rather than allowing NGDBuild to
run EDIF2NGD, you must use the two —a options consistently. If you previously ran
NGDBuild on your design and NGO files are present, you must use the -nt on option
the first time you use —a. This forces a rebuild of the NGO files, allowing EDIF2NGD to
run the -a option.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 83

Chapter 6: NGDBuild £ XILINX:

-aul (Allow Unmatched LOCs)

By default the program generates an error if the constraints specified for pin, net, or
instance names in the UCF or NCF file cannot be found in the design, and an NGD
file is not written. Use this option to generate a warning instead of an error for LOC
constraints and make sure an NGD file is written.

Syntax
-aul

You may want to run this program with the —aul option if your constraints file includes
location constraints for pin, net, or instance names that have not yet been defined in the
HDL or schematic. This allows you to maintain one version of your constraints files for
both partially complete and final designs.

Note When using this option, make sure you do not have misspelled net or instance
names in your design. Misspelled names may cause inaccurate placing and routing.

-aut (Allow Unmatched Timegroups)

By default the program generates an error if timegroups specified in the UCF or NCF
file cannot be found in the design, and an NGD file is not written. Use this option to
generate a warning instead of an error for timegroup constraints and make sure an
NGD file is written.

Syntax
-aut

You may want to run this program with the —aut option if your constraints file includes
timegroup constraints that have not yet been defined in the HDL or schematic. This
allows you to maintain one version of your constraints files for both partially complete
and final designs.

Note When using this option, make sure you do not have misspelled timegroup names
in your design. Misspelled names may cause inaccurate placing and routing.

-bm (Specify BMM Files)

This option specifies a switch for the BMM files. If the file extension is missing, a .bmm
file extension is assumed.

Syntax
-bm File_name [-bmm]

If this option is unspecified, the ELF or MEM root file name with a . bmm extension

is assumed. If only this option is given, then NGDBuild verifies that the BMM file is
syntactically correct and makes sure that the instances specified in the BMM file exist in
the design. Only one —bm option can be used.

-dd (Destination Directory)

This option specifies the directory for intermediate files (design NGO files and netlist
files). If the —dd option is not specified, files are placed in the current directory.

Syntax
-dd NGOoutput_directory

Command Line Tools User Guide
84 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 6: NGDBuild

-f (Execute Commands File)

This option executes the command line arguments in the specified command_file.

Syntax
-f command_file

For more information on the - option, see -f (Execute Commands File) in the
Introduction chapter.

-i (Ignore UCF File)

This option tells NGDBuild to ignore the UCF file. Without this option NGDBuild reads
the constraints in the UCF file automatically if the UCF file in the top-level design netlist
directory has the same base name as the input design file and a . ucT extension.

Syntax

Note If you use this option, do not use the -uc option.

-insert_keep_hierarchy (Insert KEEP_HIERARCHY constraint)

This option automatically attaches the KEEP_HIERARCHY constraint to each input
netlist. It should only be used when performing a bottom-up synthesis flow, where
separate netlists are created for each piece of hierarchy. When using this option you
should use good design practices as described in the Synthesis and Simulation Design
Guide.

Syntax
-insert_keep_hierarchy

Note Care should be taken when trying to use this option with Cores, as they may
not be coded for maintaining hierarchy.

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax
-intstyle ise|xflow]|silent

When using —intstyle, one of three modes must be specified:

e -—intstyle ise indicates the program is being run as part of an integrated design
environment.

e -intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e -—intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 85

Chapter 6: NGDBuild

& XILINXe

-filter (Filter File)

This option specifies a filter file, which contains settings to capture and filter messages
produced by the program during execution.

Syntax

-filter [filter_file]
By default, the filter file name is Filter_filter.

-I (Libraries to Search)

This option indicates the list of libraries to search when determining what library
components were used to build the design. This option is passed to the appropriate
netlist reader. The information allows NGDBuild to determine the source of the design
components so it can resolve the components to NGD primitives.

Syntax

-1 {libname}

You can specify multiple libraries by entering multiple -1 libname entries on the
NGDBuild command line.

Valid entries for libname are the following;:
e xilinxun (Xilinx® Unified library)
* Synopsys

Note Using -1 xilinxun is optional, since NGDBuild automatically accesses these
libraries. In cases where NGDBuild automatically detects Synopsys designs (for
example, the netlist extension is . sedif), -1 synopsys is also optional.

-nt (Netlist Translation Type)

This option determines how timestamps are treated by the Netlist Launcher when it is
invoked by NGDBuild. A timestamp is information in a file that indicates the date and
time the file was created.

Syntax

-nt timestamp|on]off

timestamp (the default) instructs the Netlist Launcher to perform the normal timestamp
check and update NGO files according to their timestamps.

on translates netlists regardless of timestamps (rebuilding all NGO files).
off does not rebuild an existing NGO file, regardless of its timestamp.

-p (Part Number)

This option specifies the part into which your design is implemented.

Syntax

-p part_number
Note For syntax details and examples, see -p (Part Number) in the Introduction chapter.

When you use this option, the NGD file produced by NGDBuild is optimized for
mapping into that architecture.

86

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 6: NGDBuild

You do not need to specify a part if your NGO file already contains information about
the desired vendor and family (for example, if you placed a PART property in a
schematic or a CONFIG PART statement in a UCF file). However, you can override the
information in the NGO file with the —p option when you run NGDBuild.

-quiet (Quiet)

This option tells the program to only report error and warning messages.

Syntax

-quiet

-r (Ignore LOC Constraints)

This option eliminates all location constraints (LOC=) found in the input netlist or UCF
file. Use this option when you migrate to a different device or architecture, because
locations in one architecture may not match locations in another.

Syntax

-r

-sd (Search Specified Directory)

This option adds the specified search_path to the list of directories to search when
resolving file references (that is, files specified in the schematic with a FILE=filename
property) and when searching for netlist, NGO, NGC, NMC, and MEM files. You do
not have to specify a search path for the top-level design netlist directory, because it
is automatically searched by NGDBuild.

Syntax

-sd {search_path}

The search_path must be separated from the -sd option by spaces or tabs (for example,
-sd designs is correct, -sddesigns is not). You can specify multiple search paths
on the command line. Each must be preceded with the —sd option; you cannot specify
more than one search_path with a single —sd option. For example, the following syntax is
acceptable for specifying two search paths:

-sd /home/macros/counter -sd /home/designs/pal?2
The following syntax is not acceptable:

-sd /home/macros/counter /home/designs/pal2

-u (Allow Unexpanded Blocks)

In the default behavior of NGDBuild (without the —u option), NGDBuild generates an
error if a block in the design cannot be expanded to NGD primitives. If this error occurs,
an NGD file is not written. If you enter this option, NGDBuild generates a warning
instead of an error if a block cannot be expanded, and writes an NGD file containing
the unexpanded block.

Syntax

-u

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 87

Chapter 6: NGDBuild

& XILINXe

You may want to run NGDBuild with the -u option to perform preliminary mapping,
placement and routing, timing analysis, or simulation on the design even though the
design is not complete. To ensure the unexpanded blocks remain in the design when it is
mapped, run the MAP program with the —u (Do Not Remove Unused Logic) option, as
described in the MAP chapter.

-uc (User Constraints File)

This option specifies a User Constraints File (UCF) for the Netlist Launcher to read.
UCEF files contain timing and layout constraints that affect the way the logical design is
implemented in the target device.

You can include multiple instances of the -uc option on the command line. Multiple UCF
files are processed in the order they appear on the command line, and as though they
are simply concatenated.

Note If you use this option, do not use the -i option.

Syntax

-uc ucf _file[.ucf]

ucf_file is the name of the UCF file. The user constraints file must have a . ucT extension.
If you specify a user constraints file without an extension, NGDBuild appends the .ucf
extension to the file name. If you specify a file name with an extension other than . ucf,
you get an error message and NGDBuild does not run.

If you do not enter a -uc option and a UCF file exists with the same base name as the
input design file and a . ucT extension, NGDBuild automatically reads the constraints in
this UCF file.

For more information on constraints, see the Constraints Guide.

-ur (Read User Rules File)

This option specifies a user rules file for the Netlist Launcher to access. This file
determines the acceptable netlist input files, the netlist readers that read these files,
and the default netlist reader options. This file also allows you to specify third-party
tool commands for processing designs.

Syntax

-ur rules_file[.urf]

The user rules file must have a . urf extension. If you specify a user rules file with no
extension, NGDBuild appends the .urf extension to the file name. If you specify a file
name with an extension other than .ur¥, you get an error message and NGDBuild
does not run.

See User Rules File (URF) in Appendix B for more information.

-verbose (Report All Messages)

This option enhances screen output to include all messages output by the tools run:
NGDBuild, the netlist launcher, and the netlist reader. This option is useful if you want
to review details about the tools run.

Syntax

-verbose

88

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 7

MAP

This chapter describes the MAP program, which is used during the implementation
process to map a logical design to a Xilinx® FPGA. This chapter contains the following
sections:

e MAP Overview

e MAP Process

* MAP Syntax

* MAP Options

* Resynthesis and Physical Synthesis Optimizations
¢ Guided Mapping

¢ Simulating Map Results

* MAP Report (MRP) File

¢ Physical Synthesis Report (PSR) File

* Halting MAP

MAP Overview

The MAP program maps a logical design to a Xilinx® FPGA. The input to MAP is an
NGD file, which is generated using the NGDBuild program. The NGD file contains a
logical description of the design that includes both the hierarchical components used to
develop the design and the lower level Xilinx primitives. The NGD file also contains any
number of NMC (macro library) files, each of which contains the definition of a physical
macro. Finally, depending on the options used, MAP places the design.

MAP first performs a logical DRC (Design Rule Check) on the design in the NGD file.
MAP then maps the design logic to the components (logic cells, I/O cells, and other
components) in the target Xilinx FPGA.

The output from MAP is an NCD (Native Circuit Description) file a physical
representation of the design mapped to the components in the targeted Xilinx FPGA.
The mapped NCD file can then be placed and routed using the PAR program.

The following figure shows the MAP design flow:

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 89

Chapter 7: MAP

& XILINXe

MAP Design Flow

NMC NGD
Macro Definition Generic Database

i ¥

- MAP —-—(NGM)
—

/

PCF MRP
Physical Constraints MAF Report

(NCD
Circuit Description

Guide File (Mapped)

X024

MAP Device Support

This program is compatible with the following device families:

Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6
Virtex®-4, Virtex-5, and Virtex-6

MAP Input Files

MAP uses the following files as input:

NGD file - Native Generic Database (NGD) file. This file contains a logical
description of the design expressed both in terms of the hierarchy used when the
design was first created and in terms of lower-level Xilinx primitives to which the
hierarchy resolves. The file also contains all of the constraints applied to the design
during design entry or entered in a UCF (User Constraints File). The NGD file

is created by the NGDBuild program.

NMC file - Macro library file. An NMC file contains the definition of a physical
macro. When there are macro instances in the NGD design file, NMC files are
used to define the macro instances. There is one NMC file for each type of macro
in the design file.

Guide NCD file - An optional input file generated from a previous MAP run. An
NCD file contains a physical description of the design in terms of the components in
the target Xilinx device. A guide NCD file is an output NCD file from a previous
MAP run that is used as an input to guide a later MAP run.

Guide NGM file - An optional input file, which is a binary design file containing
all of the data in the input NGD file as well as information on the physical design
produced by the mapping. See Guided Mapping for details.

Activity files - An optional input file. MAP supports two activity file formats,
-saifand .vcd.

90

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 7: MAP

MAP Output Files

Output from MAP consists of the following files:

* NCD (Native Circuit Description) file - A physical description of the design in
terms of the components in the target Xilinx device. For a discussion of the output
NCD file name and its location, see -o (Output File Name).

e PCF (Physical Constraints File) - An ASCII text file that contains constraints
specified during design entry expressed in terms of physical elements. The physical
constraints in the PCF are expressed in Xilinx constraint language.

MAP creates a PCF file if one does not exist or rewrites an existing file by overwriting
the schematic-generated section of the file (between the statements SCHEMATIC
START and SCHEMATIC END). For an existing physical constraints file, MAP also
checks the user-generated section for syntax errors and signals errors by halting
the operation. If no errors are found in the user-generated section, the section

is unchanged.

e NGM file - A binary design file that contains all of the data in the input NGD file as
well as information on the physical design produced by mapping. The NGM file is
used to correlate the back-annotated design netlist to the structure and naming of
the source design. This file is also used by SmartGuide™ technology.

* MRP (MAP report) - A file that contains information about the MAP run. The
MREP file lists any errors and warnings found in the design, lists design attributes
specified, and details on how the design was mapped (for example, the logic that
was removed or added and how signals and symbols in the logical design were
mapped into signals and components in the physical design). The file also supplies
statistics about component usage in the mapped design. See MAP Report (MRP)
File for more details.

* MAP (MAP Log) file - A log file which is the log as it is dumped by Map during
operation (as opposed to the report file (MRP), which is a formatted file created
after Map completes).

* PSR (Physical Synthesis Report) file - A file details the optimizations that were done
by any of the MAP physical synthesis options. These options include —global_opt,
-register_duplication, -retiming, —equivalent_register_removal,
-logic_opt, and —register_duplication. This report will only get generated
if one of these options is enabled.

The MRP, MAP, PCF, and NGM files produced by a MAP run all have the same name as
the output NCD file, with the appropriate extension. If the MRP, MAP, PCF, or NGM
files already exist, they are overwritten by the new files.

MAP Process

MAP performs the following steps when mapping a design.

1. Selects the target Xilinx® device, package, and speed. MAP selects a part in one
of the following ways:

® Uses the part specified on the MAP command line.

e If a part is not specified on the command line, MAP selects the part specified in
the input NGD file. If the information in the input NGD file does not specify a
complete architecture, device, and package, MAP issues an error message and
stops. If necessary, MAP supplies a default speed.

Reads the information in the input design file.

Performs a Logical DRC (Design Rule Check) on the input design. If any DRC
errors are detected, the MAP run is aborted. If any DRC warnings are detected,
the warnings are reported, but MAP continues to run. The Logical Design Rule

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 91

Chapter 7: MAP

& XILINXe

MAP Syntax

10.

11.

12.

Check (DRC) (also called the NGD DRC) is described in the Logical Design Rule
Check (DRC) chapter.

Note Step 3 is skipped if the NGDBuild DRC was successful.

Removes unused logic. All unused components and nets are removed, unless the
following conditions exist:

* A Xilinx Save constraint has been placed on a net during design entry. If an
unused net has an S constraint, the net and all used logic connected to the net
(as drivers or loads) is retained. All unused logic connected to the net is deleted.
For a more complete description of the S constraint, see the Constraints Guide.

e The -u option was specified on the MAP command line. If this option is
specified, all unused logic is kept in the design.

Maps pads and their associated logic into IOBs.

Maps the logic into Xilinx components (IOBs, Slices, etc.). The mapping is influenced
by various constraints; these constraints are described in the Constraints Guide.

Updates the information received from the input NGD file and write this updated
information into an NGM file. This NGM file contains both logical information about
the design and physical information about how the design was mapped. The NGM
file is used only for back-annotation. For more information, see Guided Mapping.

Creates a physical constraints (PCF) file. This is a text file that contains any
constraints specified during design entry. If no constraints were specified during
design entry, an empty file is created so that you can enter constraints directly into
the file using a text editor or indirectly through FPGA Editor.

MAP either creates a PCF file if none exists or rewrites an existing file by overwriting
the schematic-generated section of the file (between the statements SCHEMATIC
START and SCHEMATIC END). For an existing constraints file, MAP also checks
the user-generated section and may either comment out constraints with errors or
halt the program. If no errors are found in the user-generated section, the section
remains the same.

Automatically places the design for all architectures other than Spartan®-3 or
Virtex®-4. For MAP to run placement for Spartan-3 or Virtex-4 parts, the —timing
option must be enabled.

Runs a physical Design Rule Check (DRC) on the mapped design. If DRC errors are
found, MAP does not write an NCD file.

Creates an NCD file, which represents the physical design. The NCD file describes
the design in terms of Xilinx components CLBs, IOBs, etc.

Writes a MAP report (MRP) file, which lists any errors or warnings found in the
design, details how the design was mapped, and supplies statistics about component
usage in the mapped design.

The following syntax maps your logical design:

map [options] infile.ngd] [pcf_file.pcf]]

options can be any number of the MAP command line options listed in the MAP Options
section of this chapter. Enter options in any order, preceded them with a dash (minus
sign on the keyboard) and separate them with spaces.

infile is the input NGD file name. You do not need to enter the .ngd extension, since
map looks for an NGD file as input.

92

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 7: MAP

pcf_file is the name of the output Physical Constraints File (PCF). If not specified, the PCF
name and location are determined in the following ways:

* If you do not specify a PCF on the command line, the PCF has the same name as the
output file but with a . pcf extension. The file is placed in the output files directory.

¢ If you specify a PCF with no path specifier (for example, cpu_1.pc¥ instead of
/home/designs/cpu_1.pcT), the PCF is placed in the current working directory.

e If you specify a physical constraints file name with a full path specifier (for example,
/home/designs/cpu_1.pcT), the PCF is placed in the specified directory.

e If the PCF already exists, MAP reads the file, checks it for syntax errors, and
overwrites the schematic-generated section of the file. MAP also checks the
user-generated section for errors and corrects errors by commenting out physical
constraints in the file or by halting the operation. If no errors are found in the
user-generated section, the section is unchanged.

Note For a discussion of the output file name and its location, see -o (Output File Name).

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 93

Chapter 7: MAP

& XILINXe

MAP Options

This section describes PAR options in more detail. The listing is in alphabetical order.

-activity_file

-bp (Map Slice Logic)

-c (Pack Slices)

-cm (Cover Mode)

-detail (Generate Detailed MAP Report)
-equivalent_register_removal (Remove Redundant Registers)
-f (Execute Commands File)

-global_opt (Global Optimization)
-ignore_keep_hierarchy (Ignore KEEP_HIERARCHY Properties)
-intstyle (Integration Style)

-ir (Do Not Use RLOCs to Generate RPMs)
-filter (Filter File)

-lc (Lut Combining)

-logic_opt (Logic Optimization)

-mt (Multi-Threading)

-ntd (Non Timing Driven)

-0 (Output File Name)

-ol (Overall Effort Level)

-p (Part Number)

-power (Power Optimization)

-pr (Pack Registers in I/O)

-register_duplication (Duplicate Registers)
-retiming (Register Retiming During Global Optimization)
-smartguide (SmartGuide)

-t (Placer Cost Table)

-timing (Timing-Driven Packing and Placement)
-u (Do Not Remove Unused Logic)

-w (Overwrite Existing Files)

-x (Performance Evaluation Mode)

-xe (Extra Effort Level)

-xt (Routing Strategy)

-activity_file (Activity File)

This option lets you specify a switching activity data file to guide power optimizations.

Syntax

-activity Ffile activity Ffile .{vhdl|saif}

MAP supports two activity file formats, .saif and .vcd.

Note This option is supported for all FPGA architectures.

Note This option is only valid if you also use —power on (See -power (Power
Optimization) option) on the MAP command line.

94

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 7: MAP

-bp (Map Slice Logic)
This option enables block RAM mapping.

When block RAM mapping is enabled, MAP attempts to place LUTs and FFs into
single-output, single-port block RAMs.

You can create a file containing a list of register output nets that you want converted
into block RAM outputs. To instruct MAP to use this file, set the environment variable
XIL_MAP_BRAM_FILE to the file name. MAP looks for this environment variable when
the -bp option is specified. Only those output nets listed in the file are made into block
RAM outputs. Because block RAM outputs are synchronous and can only be reset, the
registers packed into a block RAM must also be synchronous reset.

Note Any LUT with an area group constraint will not be placed in block RAM. Any
logic to be considered for packing into block RAM must be removed from area groups.

Syntax
_bp

-c (Pack Slices)

This option determines the degree to which slices utilize unrelated packing when the
design is mapped.

Note Slice packing and compression are not available if you use —timing
(timing-driven packing and placement).

Syntax
-Cc [packfactor]

The default value for packfactor (no value for —c, or —C is not specified) is 100.

* For Spartan®-3, Spartan-3A, Spartan-3E, and Virtex®-4 devices when —timing is
not specified, packfactor can be any integer between 0 and 100 (inclusive).

* For Spartan-3, Spartan-3A, Spartan-3E, and Virtex-4 devices when —timing is
specified, packfactor can only be 0, 1 or 100.

* For Spartan-6, Virtex-5, and Virtex-6 devices, timing-driven packing and placement
is always on and packfactor can be 0, 1 or 100.

Note For these architectures, you can also try -lc (Lut Combining) to increase
packing density.

The packfactor (for non-zero values) is the target slice density percentage.

* A packfactor value of 0 specifies that only related logic (logic having signals in
common) should be packed into a single Slice, and yields the least densely packed
design.

* A packfactor of 1 results in maximum packing density as the packer is attempting
1% slice utilization.

* A packfactor of 100 means that only enough unrelated packs will occur to fit the
device with 100% utilization. This results in minimum packing density.

For packfactor values from 1 to 100, MAP merges unrelated logic into the same slice only
if the design requires denser packing to meet the target slice utilization. If there is no
unrelated packing required to fit the device, the number of slices utilized when -¢ 100
is specified will equal the number utilized when -c 0 is specified.

Although specifying a lower packfactor results in a denser design, the design may then
be more difficult place and route. Unrelated packs can create slices with conflicting
placement needs and the denser packing can create local routing congestion.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 95

Chapter 7: MAP

& XILINXe

Note The -c 1 setting should only be used to determine the maximum density
(minimum area) to which a design can be packed. Xilinx® does not recommend

using this option in the actual implementation of your design. Designs packed to this
maximum density generally have longer run times, severe routing congestion problems
in PAR, and poor design performance.

Processing a design with the —c 0 option is a good way to get a first estimate of the
number of Slices required by your design.

-cm (Cover Mode)

This option specifies the criteria used during the cover phase of MAP.

Note This option is not available for Spartan®-6 and Virtex®-6 architectures.

Syntax

-cm [area|speed]|balanced]

In this phase, MAP assigns the logic to CLB function generators (LUTs). Use the area,
speed, and balanced settings as follows:

area (the default) makes reducing the number of LUTs (and therefore the number of
CLBs) the highest priority.

speed has a different effect depending on whether or not there are user specified timing
constraints. For designs with user-specified timing constraints, the speed mode makes
achieving timing constraints the highest priority and reducing the number of levels of
LUTS (the number of LUTs a path passes through) the next priority. For designs with no
user-specified timing constraints, the speed mode makes achieving maximum system
frequency the highest priority and reducing the number levels of LUTs the next priority.
This setting makes it easiest to achieve timing constraints after the design is placed and
routed. For most designs, there is a small increase in the number of LUTs (compared to
the area setting), but in some cases the increase may be large.

balanced tries to balance the two priorities - achieving timing requirements and reducing
the number of LUTs. It produces results similar to the speed setting but avoids the
possibility of a large increase in the number of LUTs. For a design with user-specified
timing constraints, the balanced mode makes achieving timing constraints the highest
priority and reducing the number of LUTS the next priority. For the design with no
user-specified timing constraints, the balanced mode makes achieving maximum system
frequency the highest priority and reducing the number of LUTs the next priority.

-detail (Generate Detailed MAP Report)

This option enables optional sections in the Map report.

Syntax

-detail

When you use -detail, DCM and PLL configuration data (Section 12) and information
on control sets (Section 13, Virtex®-5 only) are included in the MAP report.

-equivalent_register_removal (Remove Redundant Registers)

This option removes redundant registers.

Note This option is available for Spartan®-6, Virtex®-6, Virtex-5, and Virtex-4 devices
only.

96

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 7: MAP

Syntax

-equivalent_register_removal {on|off}

With this option on, any registers with redundant functionality are examined to see if
their removal will increase clock frequencies. By default, this option is on.

Note This option is available only when you use the -global_opt (Global Optimization).

-f (Execute Commands File)

This option executes the command line arguments in the specified command_file.

Syntax

-f command_file

For more information on the - option, see -f (Execute Commands File) in the
Introduction chapter.

-global_opt (Global Optimization)

This option directs MAP to perform global optimization routines on the fully assembled
netlist before mapping the design.

Note This option is available for Spartan®-6, Virtex®-6, Virtex-5, and Virtex-4 devices
only.

Syntax

-global_opt off|speed]areal]power

off is the default.
speed optimizes for speed.
area optimizes for minimum area (not available for Virtex-4 devices).

power optimizes for minimum power (not available for Virtex-4 devices)

Global optimization includes logic remapping and trimming, logic and register
replication and optimization, and logic replacement of 3-state buffers. These routines
will extend the runtime of MAP because extra processing occurs. By default this option
is off.

Note The —global_opt power option can use the activity data supplied via the
-activityfile option

You cannot use the —u option with ~global_opt. When SmartGuide™ is enabled
(-smartguide), guide percentages will decrease.

Note See the -equivalent_register_removal (Remove Redundant Registers) and
-retiming (Register Retiming During Global Optimization) options for use with
-global_opt. See also the Re-Synthesis and Physical Synthesis Optimizations section
of this chapter.

-ignore_keep_hierarchy (Ignore KEEP_HIERARCHY Properties)

This option causes MAP to ignore all "KEEP_HIERARCHY" properties on blocks.

Syntax

-ignore_keep_hierarchy

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 97

Chapter 7: MAP £ XILINX:

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax
-intstyle ise|xflow]|silent

When using —intstyle, one of three modes must be specified:
e -intstyle ise indicates the program is being run as part of an integrated design

environment.

* -—intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e -intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

-ir (Do Not Use RLOCs to Generate RPMSs)

This option controls how MAP processes RLOC statements.

Syntax
-ir all]off|place

all disables all RLOC processing.
off allows all RLOC processing.

place tells MAP to use RLOC constraints to group logic within Slices, but not to generate
RPMs (Relationally Placed Macros) controlling the relative placement of Slices.

-filter (Filter File)

This option specifies a filter file, which contains settings to capture and filter messages
produced by the program during execution.

Syntax
-filter [filter_file]
By default, the filter file name is Filter.filter.

-Ic (Lut Combining)

This option instructs Map to combine two LUT components into a single LUT6 site,
utilizing the dual output pins of that site.

Note This option is available for Spartan®-6, Virtex®-6, and Virtex-5 devices only.

Syntax
-Ic auto]area]off

area is the more aggressive option, combining LUTs whenever possible.

auto (the default for Spartan-6 devices) will attempt to strike a balance between
compression and performance.

Command Line Tools User Guide
98 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 7: MAP

off (the default for Virtex-6 and Virtex-5 devices) will disable the LUT Combining
feature.

-logic_opt (Logic Optimization)

This option invokes post-placement logic restructuring for improved timing and design
performance.

Syntax
-logic_opt on]off

The -logic_opt option works on a placed netlist to try and optimize timing-critical
connections through restructuring and resynthesis, followed by incremental placement
and incremental timing analysis. A fully placed, timing optimized NCD design file is
produced. Note that this option requires timing-driven mapping, which is enabled
with the MAP -timing option. When SmartGuide™ is enabled (-smartguide), guide
percentages will decrease.

Note See also the Re-Synthesis and Physical Synthesis Optimizations section of this
chapter.

-mt (Multi-Threading)

This option lets MAP use more than one processor. It provides multi-threading
capabilities to the Placer.

Note This option is available for Spartan®-6, Virtex®-6, and Virtex-5 devices only.

Syntax
-mt off|2

The default is oFf. When ofT, the software uses only one processor. When the value is
2, the software will use 2 cores if they are available.

-ntd (Non Timing Driven)

This option performs non-timing driven placement.

Syntax
-ntd

When the -ntd switch is enabled, all timing constraints are ignored and the
implementation tools do not use any timing information to place and route the design.

Note To run the entire flow without timing constraints, the —-ntd switch needs to be
specified for both MAP and PAR.

-0 (Output File Name)

This option specifies the name of the output NCD file for the design.

Syntax
-0 outfile[.ncd]

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 99

Chapter 7: MAP

& XILINXe

The .ncd extension is optional. The output file name and its location are determined in
the following ways:

¢ If you do not specify an output file name with the -0 option, the output file has the
same name as the input file, with a . ncd extension. The file is placed in the input
files directory

¢ Ifyou specify an output file name with no path specifier (for example, cpu_dec.ncd
instead of /home/designs/cpu_dec.ncd), the NCD file is placed in the current
working directory.

¢ If you specify an output file name with a full path specifier (for example,
/home/designs/cpu_dec.ncd), the output file is placed in the specified directory.

o If the output file already exists, it is overwritten with the new NCD file. You do not
receive a warning when the file is overwritten.

Note Signals connected to pads or to the outputs of flip-flops, latches, and RAMS found
in the input file are preserved for back-annotation.

-ol (Overall Effort Level)

This option sets the overall MAP effort level. The effort level controls the amount of time
used for packing and placement by selecting a more or less CPU-intensive algorithm
for placement.

Syntax

-ol std]high

* Use std for low effort level (fastest runtime at expense of QOR)
* Use high for high effort level (best QOR with increased runtime)
The default effort level is high for all architectures.

The -0l option is available when running timing-driven packing and placement with
the —~timing option.

Note Xilinx® recommends setting the MAP effort level to equal or higher than the
PAR effort level.

Example

map -timing -ol std design.ncd output.ncd design.pcf

This example sets the overall MAP effort level to std (fastest runtime at expense of
QOR).

-p (Part Number)

This option specifies the part into which your design is implemented.

Syntax

-p part_number
Note For syntax details and examples, see -p (Part Number) in the Introduction chapter.

If you do not specify a part number, MAP selects the part specified in the input NGD
file. If the information in the input NGD file does not specify a complete device and
package, you must enter a device and package specification using this option. MAP
supplies a default speed value, if necessary.

100

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 7: MAP

The architecture you specify must match the architecture specified in the input NGD file.
You may have chosen this architecture when you ran NGDBuild or during an earlier
step in the design entry process (for example, you may have specified the architecture in
the ISE® Design Suite or in your synthesis tool). If the architecture does not match, you
must run NGDBuild again and specify the architecture.

-power (Power Optimization)

This option specifies that placement is optimized to reduce power. For Virtex®-6
devices, you can specify the use of new algorithms to further reduce power.

Syntax

-power onjoff]high]xe

off specifies that no power optimization with a negative effect on runtime, memory or
performance will be performed. This is the default option.

on (standard) specifies the use of power optimization algorithms during placement to

decrease capacitive loading on data and clocking nets to reduce overall dynamic power.
The main trade-off with this option is additional runtime and modified placement which
may result in slightly reduced performance. This option is available for all architectures.

high specifies the use of clock gating algorithms that reduce overall switching to reduce
dynamic power in the design. The main trade-off with this option is additional runtime,
minor area increase, increased system memory requirements and additional logic in the
data or control paths that can result in reduced performance. However, the power
savings is generally more substantial than savings when you use on (standard). This
option is available only for Virtex-6 devices.

xe (extra effort) specifies the use of both standard and high algorithms for the greatest
reduction in dynamic power optimization. However, this selection generally has

the largest impact on runtime, area, memory and performance. This option is only
recommended when you have adequate timing slack in the design and additional
runtime and memory can be tolerated. This option is available only for Virtex-6 devices.

When you use -power on, you can also specify a switching activity file to further
improve power optimization. For more information see -activity_file.

You can use the -power option with the —~global_opt power switch for additional
power optimization and improvement. For more information see -global_opt.

-pr (Pack Registers in 1/O)

This option places registers in I/O.

Syntax

—pr offlilolb

By default (without the —pr option), MAP only places flip-flops or latches within an
I/O component if an IOB = TRUE attribute has been applied to the register either by
the synthesis tool or by the User Constraints File (.ucf). The —pr option specifies that
flip-flops or latches may be packed into input registers (i selection), output registers
(0 selection), or both (b selection) even if the components have not been specified in
this way. If this option is not specified, defaults to off. AnIOB property on a register,
whether set to TRUE or FALSE, will override the —pr option for that specific register.

-register_duplication (Duplicate Registers)

This option duplicates registers.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 101

Chapter 7: MAP

& XILINXe

Syntax

-register_duplication on]off

The -register_duplication option is only available when running timing-driven
packing and placement with the —timing option. The -register_duplication
option duplicates registers to improve timing when running timing-driven packing. See
-timing (Timing-Driven Packing and Placement).

-retiming (Register Retiming During Global Optimization)

This option registers retiming during global optimization.

Note This option is available for Spartan®-6, Virtex®-6, Virtex-5, and Virtex-4 devices
only.

Syntax

-retiming on]off

When this option is on, registers are moved forward or backwards through the logic
to balance out the delays in a timing path to increase the overall clock frequency. By
default, this option is off.

The overall number of registers may be altered due to the processing.

Note This option is available only when -global_opt (Global Optimization) is used.

-smartguide (SmartGuide)

This option instructs the program to use results from a previous implementation to guide
the current implementation, based on a placed and routed NCD file. SmartGuide™
technology automatically enables timing-driven packing and placement in MAP (map
-timing), which improves design performance and timing for highly utilized designs.

You may obtain better results if you use the map -timing option to create a placed and
routed NCD guide file before enabling SmartGuide technology. SmartGuide technology
can be enabled from the command line or from the Hierarchy pane of the Design panel
in Project Navigator.

Syntax

-smartguide design_name .ncd

Note SmartGuide technology will give you a higher guide percentage if an NGM file
is available. The NGM file contains information on the transformations done in the
MAP process. See the MAP Process section of this chapter for information on how
MAP detects the NGM file.

With SmartGuide technology, all guiding is done in MAP at the BEL level. Guiding
includes packing, placement, and routing. SmartGuide technology optimally changes
the packing and placement of a design and then routes new nets during PAR. The first
goal of SmartGuide technology is to maintain design implementation on the unchanged
part and meet timing requirements on the changed part; the second goal is to reduce
runtime. Notice that the unchanged part of the implementation will not be changed and
therefore will keep the same timing score. Paths that fail timing but do not change
should be 100% guided. Paths that fail timing and are changed will be re-implemented.

102

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 7: MAP

The results from the MAP run are stored in the output map report file (.mrp). Guide
statistics, including the number of guided nets and all new, guided, and re-implemented
components are listed in the map report, which is an estimated report. The final statistics
are listed in the PAR report file (. par). A separate guide report file (.grT) is generated
by PAR. If you use -smartguide in the PAR command line, a detailed guide report file
is created. If you do not use ~smartguide, a summary guide report file is created. The
guide report file lists components and nets that are re-implemented or new.

The -timing option enables all options specific to timing-driven packing and
placement. This includes the —ol option, which sets the overall effort level used to
pack and place the design. See -ol (Overall Effort Level) for more information. The
following options are enabled when you use -timing: -logic_opt, -ntd, -ol,
-register_duplication, -x, and -xe. See individual option descriptions in this
section for details. See also -timing (Timing-Driven Packing and Placement) for more
information.

-t (Placer Cost Table)

This option specifies the cost table used by the placer.

Syntax

-t [placer_cost_table]

placer_cost_table is the cost table the placer uses (placer cost tables are described in the
PAR Chapter). Valid values are 1-100 and the default is 1.

To automatically create implementations using several different cost tables, please refer
to the SmartXplorer section in this document.

Note The -t option is only available when running timing-driven packing and
placement with the —timing option.

-timing (Timing-Driven Packing and Placement)

This option is used to improve design performance. It instructs MAP to do both packing
and placement of the design. User-generated timing constraints specified in a UCF/NCF
file drive these packing and placement operations.

Note —timing is optional for all Spartan®-3 families and Virtex®-4 devices (default is
off). It is always on for Spartan-6, Virtex-6, and Virtex-5 devices.

Syntax

—-timing

When you specify —timing, placement occurs in MAP rather than in PAR. Using this
option may result in longer runtimes for MAP, though it will reduce the PAR runtime.

Timing-driven packing and placement is recommended to improve design performance,
timing, and packing for highly utilized designs. If the unrelated logic number (shown in
the Design Summary section of the MAP report) is non-zero, then the —timing option is
useful for packing more logic in the device. Timing-driven packing and placement is
also recommended when there are local clocks present in the design. If timing-driven
packing and placement is selected in the absence of user timing constraints, the tools will
automatically generate and dynamically adjust timing constraints for all internal clocks.
This feature is referred to as Performance Evaluation Mode. See also -x (Performance
Evaluation Mode) for more information. This mode allows the clock performance for all
clocks in the design to be evaluated in one pass. The performance achieved by this mode
is not necessarily the best possible performance each clock can achieve, instead it is a
balance of performance between all clocks in the design.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 103

Chapter 7: MAP

& XILINXe

The -timing option enables all options specific to timing-driven packing and
placement. This includes the -0l option, which sets the overall effort level used to
pack and place the design. See -ol (Overall Effort Level) for more information. The
following options are enabled when you use —~timing: -logic_opt, -ntd, -ol,
-register_duplication, -x, and -xe. See individual option descriptions in this
section for details. See also Re-Synthesis and Physical Synthesis Optimizations in this
chapter for more information.

-u (Do Not Remove Unused Logic)

This option tells MAP not to eliminate unused components and nets from the design.

Syntax

-u

By default (without the-u option), MAP eliminates unused components and nets from
the design before mapping. Unused logic is logic that is undriven, does not drive other
logic, or logic that acts as a “cycle” and affects no device output. When —u is specified,
MAP applies an “S” (NOCLIP) property to all dangling signals which prevents trimming
from initiating at that point and cascading through the design. Dangling components
may still be trimmed unless a dangling signal is present to accept the NOCLIP property.

-w (Overwrite Existing Files)

This option instructs MAP to overwrite existing output files, including an existing
design file (NCD).

Syntax

-W

-X (Performance Evaluation Mode)

The -x option is used if there are timing constraints specified in the user constraints file,
and you want to execute a MAP and PAR run with tool-generated timing constraints
instead to evaluating the performance of each clock in the design.

Syntax

=X

This operation is referred to as "Performance Evaluation" mode. This mode is entered
into either by using the —X option or when no timing constraints are used in a

design. The tools create timing constraints for each internal clock separately and will
tighten/loosen the constraint based on feedback during execution. The MAP effort level
controls whether the focus is on fastest run time (STD) or best performance (HIGH).

Note While —x ignores all user-generated timing constraints, specified in a UCF/NCF
file, all physical constraints such as LOC and AREA_GROUPS are used.

Note The -x and -ntd switches are mutually exclusive. If user timing constraints are
not used, only one automatic timing mode may be selected.

-xe (Extra Effort Level)

The -xe option is available when running timing-driven packing and placement with
the —timing option, and sets the extra effort level.

104

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 7: MAP

Syntax
-xe effort_level

effort_level can be set to n (normal) or € (continue). when -Xe is set to ¢, MAP continues
to attempt to improve packing until little or no improvement can be made.

map -ol high -xe n design.ncd output.ncd design.pcf

-xt (Extra Placer Cost Table)

This option specifies cost tables suited for highly utilized designs. These tables can be
used along with the regular cost tables (the -t option).

This option is available only for Spartan®-6 and Virtex®-6 devices.

Syntax

-Xt cost_table

cost_table is an integer between 0 and 5 (inclusive) that will select variations of the
algorithms to let you more closely optimize them to your design. The default is 0.

Resynthesis and Physical Synthesis Optimizations

MAP provides options that enable advanced optimizations that are capable of improving
timing results beyond standard implementations. These advanced optimizations can
transform the design prior to or after placement.

Optimizations can be applied at two different stages in the Xilinx® design flow. The first
stage happens right after the initial mapping of the logic to the architecture slices. The
MAP -global_opt option directs MAP to perform global optimization routines on a fully
mapped design, before placement. See -global_opt (Global Optimization) and -retiming
(Register Retiming During Global Optimization) for more information.

The second stage where optimizations can be applied is after placement, when paths
that do not meet timing are evaluated and re-synthesized. MAP takes the initial netlist,
places it, and then analyzes the timing of the design. When timing is not met, MAP
performs physical synthesis optimizations and transforms the netlist to meet timing. To
enable physical synthesis optimizations, timing-driven placement and routing (-timing)
must be enabled.

Physical synthesis optimizations are enabled with the -logic_opt (Logic Optimization)
and-register_duplication (Duplicate Registers) options. See the MAP Options section of
this chapter for option descriptions and usage information.

Guided Mapping

In guided mapping, an existing NCD is used to guide the current MAP run. The guide
file may be from any stage of implementation: unplaced or placed, unrouted or routed.
Xilinx® recommends generating an NCD file using the current release of the software.
Using a guide file generated by a previous software release usually works, but may
not be supported.

Note When using guided mapping with the -timing option, Xilinx recommends using a
placed NCD as the guide file. A placed NCD is produced by running MAP with the
—timing option, or running PAR.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 105

Chapter 7: MAP

& XILINXe

SmartGuide™ technology allows results from a previous implementation to guide the
next implementation. When SmartGuide is used, MAP and PAR processes use the NCD
file, specified with the ~smartguide option, to guide the new and re-implemented
components and nets. SmartGuide technology may move guided components and nets
to meet timing. The first goal of SmartGuide technology is to meet timing requirements;
the second goal is to reduce runtime.

SmartGuide technology works best at the end of the design cycle when timing is met and
small design changes are being made. If the design change is to a path that is difficult to
meet timing, the best performance will be obtained without SmartGuide technology.
Other examples of design changes that work well with SmartGuide technology are:

* Changes to pin locations

¢ Changes to attributes on instantiated components

¢ Changes for relaxing timing constraints

* Changes for adding a ChipScope™ core

In this release of Xilinx software, SmartGuide has replaced the —~gm and -gf options.
Note See -smartguide (SmartGuide) for more information.

MAP uses the NGM and the NCD files as guides. The NGM file contains information on
the transformations done in the MAP process. You do not need to specify the NGM file
on the command line. MAP infers the appropriate NGM file from the specified NCD
guide file. If no match is found, MAP looks for the appropriate NGM file based on the
embedded name, which may include the full path and name. If MAP does not find

an NGM file in the same directory as the NCD, the current directory, or based on the
embedded name, it generates a warning. In this case, MAP uses only the NCD file as
the guide file, which may be less effective.

Note SmartGuide will have a higher guide percentage if the NGM file is available.

The results from the MAP run are stored in the output map report file (.mrp). Guide
statistics, including the number of guided nets and all new, guided, and re-implemented
components are listed in the map report, which is an estimated report. The final statistics
are listed in the output PAR report. A separate guide report file (. grT) is generated by
PAR when the -smartguide option is invoked from the PAR command line. The GRF
file is a detailed report that lists components that are re-implemented or new. It also
lists nets.

Note See -smartguide (SmartGuide) for more information and other switch interactions.

Simulating Map Results

When simulating with NGC files, you are not simulating a mapped result, you are
simulating the logical circuit description. When simulating with NCD files, you are
simulating the physical circuit description.

MAP may generate an error that is not detected in the back-annotated simulation netlist.
For example, after running MAP, you can run the following command to generate the
back-annotated simulation netlist:

netgen mapped.ncd mapped.ngm -o mapped.nga

This command creates a back-annotated simulation netlist using the logical-to-physical
cross-reference file named mapped . ngm. This cross-reference file contains information
about the logical design netlist, and the back-annotated simulation netlist (napped . nga)
is actually a back-annotated version of the logical design. However, if MAP makes a
physical error, for example, implements an Active Low function for an Active High
function, this error will not be detected in the mapped. nga file and will not appear

in the simulation netlist.

106

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 7: MAP

For example, consider the following logical circuit generated by NGDBuild from a
design file, shown in the following figure.

Logical Circuit Representation

A*B+C*D

o0 @>®

CLK —

XB54G

Observe the Boolean output from the combinatorial logic. Suppose that after running
MAP for the preceding circuit, you obtain the following result.

CLB Configuration

CLB
A*B+C+*D

A

B D al——

LUT
c— |
CLK —]

D —]

XB550

Observe that MAP has generated an active low (C) instead of an active high (C).
Consequently, the Boolean output for the combinatorial logic is incorrect. When you
run NetGen using the mapped . ngm file, you cannot detect the logical error because the
delays are back-annotated to the correct logical design, and not to the physical design.

One way to detect the error is by running the NetGen command without using the
mapped.ngm cross-reference file.

netgen mapped.ncd -o mapped.nga

As a result, physical simulations using the mapped.nga file should detect a physical
error. However, the type of error is not always easily recognizable. To pinpoint the error,
use FPGA Editor or call Xilinx® Customer Support. In some cases, a reported error may
not really exist, and the CLB configuration is actually correct. You can use FPGA Editor
to determine if the CLB is correctly modeled.

Finally, if both the logical and physical simulations do not discover existing errors, you
may need to use more test vectors in the simulations.

MAP Report (MRP) File

The MAP report (MRP) file is an ASCII text file that contains information about the
MAP run. The report information varies based on the device and whether you use the
-detai l option (see the -detail (Generate Detailed MAP Report) section).

An abbreviated MRP file is shown below most report files are considerably larger than
the one shown. The file is divided into a number of sections, and sections appear even if
they are empty. The sections of the MRP file are as follows:

* Design Information - Shows your MAP command line, the device to which the
design has been mapped, and when the mapping was performed.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 107

Chapter 7: MAP

& XILINXe

Design Summary - Summarizes the mapper run, showing the number of errors
and warnings, and how many of the resources in the target device are used by
the mapped design.

Table of Contents - Lists the remaining sections of the MAP report.
Errors - Shows any errors generated as a result of the following:

— Errors associated with the logical DRC tests performed at the beginning of
the mapper run. These errors do not depend on the device to which you are

mapping.

— Errors the mapper discovers (for example, a pad is not connected to any logic,
or a bidirectional pad is placed in the design but signals only pass in one
direction through the pad). These errors may depend on the device to which
you are mapping.

— Errors associated with the physical DRC run on the mapped design.
Warnings - Shows any warnings generated as a result of the following:

— Warnings associated with the logical DRC tests performed at the beginning of
the mapper run. These warnings do not depend on the device to which you
are mapping.

— Warnings the mapper discovers. These warnings may depend on the device
to which you are mapping.

— Warnings associated with the physical DRC run on the mapped design.

Informational - Shows messages that usually do not require user intervention to
prevent a problem later in the flow. These messages contain information that may
be valuable later if problems do occur.

Removed Logic Summary - Summarizes the number of blocks and signals removed
from the design. The section reports on these kinds of removed logic.

Removed Logic - Describes in detail all logic (design components and nets) removed
from the input NGD file when the design was mapped. Generally, logic is removed
for the following reasons:

— The design uses only part of the logic in a library macro.

— The design has been mapped even though it is not yet complete.
— The mapper has optimized the design logic.

— Unused logic has been created in error during schematic entry.

This section also indicates which nets were merged (for example, two nets were
combined when a component separating them was removed).

In this section, if the removal of a signal or symbol results in the subsequent
removal of an additional signal or symbol, the line describing the subsequent
removal is indented. This indentation is repeated as a chain of related logic is
removed. To quickly locate the cause for the removal of a chain of logic, look
above the entry in which you are interested and locate the top-level line, which
is not indented.

IOB Properties - Lists each IOB to which the user has supplied constraints along
with the applicable constraints.

RPMs - Indicates each Relationally Placed Macro (RPM) used in the design, and the
number of device components used to implement the RPM.

SmartGuide Report - If you have mapped using SmartGuide™ technology, this
section shows the estimated results obtained using SmartGuide technology, which is
the estimated percentage of components and nets that were guided. SmartGuide
technology results in the MAP report are estimated. SmartGuide technology results
in the PAR report are accurate. See the ReportGen section of the PAR chapter for
more information.

108

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 7: MAP

* Area Group & Partition Summary - The mapper summarizes results for each area
group or partition found in the design. MAP uses area groups to specify a group
of logical blocks that are packed into separate physical areas. If no area groups or
partitions are found in the design, the MAP report states this.

* Timing Report - This section, produced with the —timing option, shows
information on timing constraints considered during the MAP run. This report is
not generated by default. This report is only generated when the —detai I switch is
specified.

* Configuration String Information - This section, produced with the -detail
option, shows configuration strings and programming properties for special
components like DCMs, BRAMS, GTs and similar components. DCM and PLL
reporting are available. Configuration strings for slices and IOBs marked SECURE
are not shown. This report is not generated by default. This report is only generated
when the —detai | switch is specified.

* Control Set Information - This section controls the set information that is written
only for Virtex®-5 devices. This report is not generated by default. This report is
only generated when the —detai I switch is specified.

e Utilization by Hierarchy - This section is controls the utilization hierarchy only for
Virtex-4, Virtex-5, and Spartan®-3 architectures. This report is not generated by
default. This report is only generated when the —detai l switch is specified.

Note The MAP Report is formatted for viewing in a monospace (non-proportional)
font. If the text editor you use for viewing the report uses a proportional font, the
columns in the report do not line up correctly.

Note The MAP Report generates a pinout table with pins including the values DIFFSI,
DIFFMI, and _NDT.
MAP Report Example 1

Xilinx Mapping Report File for Design “wave_gen”

Design Information

Command Line : map -intstyle ise -p xc6vIx75t-ff484-1 -w -ol high -t 1 -xt O -register_duplication off -global_opt off
-mt off -ir off -pr o -lc off -power off -o wave_gen_map.ncd wave_gen.ngd wave_gen.pcf

Target Device : xc6vIx75t

Target Package : ff484

Target Speed o -1

Mapper Version : virtex6 -- $Revision: 1.52 $

Mapped Date : Thu Feb 25 16:16:02 2010

Design Summary

Number of errors: 0
Number of warnings: 0
Slice Logic Utilization:
Number of Slice Registers: 569 out of 93,120 1%
Number used as Flip Flops: 568
Number used as Latches: 1
Number used as Latch-thrus: (0]
Number used as AND/OR logics: 0
Number of Slice LUTs: 958 out of 46,560 2%
Number used as logic: 854 out of 46,560 1%
Number using 06 output only: 658
Number using 05 output only: 15
Number using 05 and 06: 181
Number used as ROM: 0
Number used as Memory: 0 out of 16,720 0%
Number used exclusively as route-thrus: 104
Number with same-slice register load: 102
Number with same-slice carry load: 2
Number with other load: 0

Slice Logic Distribution:
Number of occupied Slices: 328 out of 11,640 2%

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 109

Chapter 7: MAP

& XILINXe

Number of LUT Flip Flop pairs used: 988
Number with an unused Flip Flop: 569
Number with an unused LUT: 30
Number of fully used LUT-FF pairs: 389
Number of unique control sets: 52
Number of slice register sites lost

to control set restrictions: 223

A LUT Flip Flop pair for this architecture represents one LUT paired with

one Flip Flop within a slice.
clock, reset, set, and enable signals for a registered element.

The Slice Logic Distribution report is not meaningful if the design is

A control set is a unique combination of

out of 988
out of 988
out of 988

out of 93,120

over-mapped for a non-slice resource or if Placement fails.

OVERMAPPING of BRAM resources should be ignored if the design is

over-mapped for a non-BRAM resource or if placement fails.

10 Utilization:
Number of bonded 10Bs:
10B Flip Flops:

Specific Feature Utilization:
Number of RAMB36E1/FIFO36Els:
Number of RAMB18E1l/FIFO018Els:

Number using RAMB18E1l only:

Number using FIFO18E1 only:
Number of BUFG/BUFGCTRLs:

Number used as BUFGs:

Number used as BUFGCTRLs:
Number of ILOGICE1/ISERDESEls:
Number of OLOGICE1/0SERDESEls:

Number used as OLOGICEls:

Number used as OSERDESEls:

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

BSCANs:
BUFHCEs:
BUFOs:
BUFI0DQSs:
BUFRs:
CAPTUREs:
DSP48E1ls:
EFUSE_USRs:
GTXEls:
I1BUFDS_GTXE1s:
ICAPs:
IDELAYCTRLS:
I10DELAYE1s:
MMCM_ADVs:
PCIE_2 Os:
STARTUPs:
SYSMONs:
TEMAC_SINGLEs:

Average Fanout of Non-Clock Nets:

Peak Memory Usage: 727 MB
Total REAL time to MAP completion: 1 mins 10 secs
Total CPU time to MAP completion:

Table of Contents

Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section

O©CO~NOOUA~WNER
|

10

Errors

Warnings
Informational

Removed Logic Summary
Removed Logic

10B Properties

RPMs

Guide Report

- Timing Report

17
11

[

OO0OO0OO0OFrRPROO0OO0OO0ODO0DO0O0ODO0O0OO0OO0ORrROORPFPOOWWONNDO

w

1 mins 5 secs

- Area Group and Partition Summary

11 - Configuration String Information
12 - Control Set Information
13 - Utilization by Hierarchy

out of 240

out of 156
out of 312
out of 32
out of 360
out of 360
out of 4
out of 72
out of 18
out of 36
out of 18
out of 1
out of 288
out of 1
out of 8
out of 6
out of 2
out of 9
out of 360
out of 6
out of 1
out of 1
out of 1
out of 4
.95

57%
3%
39%

1%

7%

0%
1%

9%

0%
3%

0%
1%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
16%
0%
0%
0%
0%

110

www.Xilinx.com

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 7: MAP

Section 1 - Errors

INFO:LIT:243 - Logical network uart_rx_i0/frm_err has no load.

INFO:MapLib:564 - The following environment variables are currently set:

INFO:MapLib:591 - XIL_MAP_NODRC Value: 1

INFO:LIT:244 - All of the single ended outputs in this design are using slew
rate limited output drivers. The delay on speed critical single ended outputs
can be dramatically reduced by designating them as fast outputs.

INFO:Pack:1716 - Initializing temperature to 85.000 Celsius. (default - Range:
0.000 to 85.000 Celsius)

INFO:Pack:1720 - Initializing voltage to 0.950 Volts. (default - Range: 0.950 to
1.050 Volts)

INFO:Timing:3386 - Intersecting Constraints found and resolved. For more information, see the TSI report. Please consult the Xilin:
Command Line Tools User Guide for information on generating a TSI report.

INFO:Map:215 - The Interim Design Summary has been generated in the MAP Report
(.mrp).

INFO:Pack:1650 - Map created a placed design.

Section 4 - Removed Logic Summary
4 block(s) removed
21 block(s) optimized away
2 signal(s) removed

Section 5 - Removed Logic

The trimmed logic report below shows the logic removed from your design due to
sourceless or loadless signals, and VCC or ground connections. If the removal
of a signal or symbol results in the subsequent removal of an additional signal
or symbol, the message explaining that second removal will be indented. This
indentation will be repeated as a chain of related logic is removed.

To quickly locate the original cause for the removal of a chain of logic, look
above the place where that logic is listed in the trimming report, then locate
the lines that are least indented (begin at the leftmost edge).

The signal "uart_rx_i0/frm_err" is sourceless and has been removed.

The signal "DAC_SPI_controller_i0/out_ddr_flop_spi_clk_i10/N1" is sourceless and
has been removed.

Unused block "char_fifo_i0/GND" (ZERO) removed.

Unused block "char_fifo_i0/VCC" (ONE) removed.

Unused block "samp_ram_i0/GND" (ZERO) removed.

Unused block "samp_ram_i0/VCC" (ONE) removed.

Optimized Block(s):

TYPE BLOCK

GND XST_GND

GND char_fifo_i0/BU2/XST_GND

VCC char_fifo_i0/BU2/XST_VCC

GND samp_ram_i0/BU2/XST_GND

VCC samp_ram_i10/BU2/XST_VCC

VCC DAC_SPI_controller_i0O/XST_VCC

GND DAC_SPI1_controller_i0/out_ddr_flop_spi_clk_10/XST_GND
vcC DAC_SPI_controller_i0/out_ddr_flop_spi_clk_i0/XST_VCC
GND clk_gen_i0/clk_core_i0/XST_GND

vcC clk_gen_i0/clk_core_i0/XST_VCC

GND clk_gen_i0/clk_div_i0/XST_GND

vCcC clk_gen_i0/clk_div_i0/XST_VCC

VCC cmd_parse_i0/XST_VCC

vCcC resp_gen_i0/XST_VCC

GND resp_gen_i0/to_bcd_i0/XST_GND

VCC resp_gen_i0/to_bcd_i10/XST_VCC

GND rst_gen_iO/reset_bridge_clk_clk_samp_i0/XST_GND
GND rst_gen_i0/reset_bridge_clk_rx_i0/XST_GND

GND rst_gen_iO/reset_bridge_clk_tx_i0/XST_GND

GND samp_gen_i10/XST_GND

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 111

Chapter 7: MAP £ XILINX:

VCC samp_gen_i0/XST_VCC

To enable printing of redundant blocks removed and signals merged, set the
detailed map report option and rerun map.

Section 6 - 10B Properties

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

o e . e . e e e e e e e e
| 10B Name | Type | Direction | 10 Standard | Diff | Drive | Slew |
| | | | | Term | Strength | Rate |
A o
DAC_clr_n_pin	10B	OUTPUT	LVCMOS25		12	sLow
DAC_cs_n_pin	10B	OUTPUT	LVCMOS25		12	sLow
SPI_MOSI_pin] 10B	OUTPUT	LVCMOS25		12	sLow	
clk_pin	10B	INPUT	LVCMOS25			
Ib_sel_pin	10B	INPUT	LVCMOS25			
led_pins<0>] 10B	OUTPUT	LVCMOS25		12	SLow	
led_pins<i>] 10B	OUTPUT	LVCMOS25		12	SLow	
led_pins<2>	10B	OUTPUT	LVCMOS25		12	SLow
led_pins<3>] 10B	OUTPUT	LVCMOS25		12	SLow	
led_pins<4>] 10B	OUTPUT	LVCMOS25		12	SLow	
led_pins<5>] 10B	OUTPUT	LVCMOS25		12] sLow		
led_pins<6>] 10B	OUTPUT	LVCMOS25		12	SLow	
led_pins<7>] 10B	OUTPUT	LVCMOS25] 12	sLow		
rst_pin	10B	INPUT	LVCMOS25			
rxd_pin] 10B	INPUT	LVCMOS25				
spi_clk_pin	10B	OUTPUT	LVCMOS25		12	sLow
txd_pin	10B	OUTPUT	LVCMOS25		12	sLow

Guide not run on this design.

Section 9 - Area Group and Partition Summary

A logic-level (pre-route) timing report can be generated by using Xilinx static
timing analysis tools, Timing Analyzer (GUI) or TRCE (command line), with the
mapped NCD and PCF files. Please note that this timing report will be generated
using estimated delay information. For accurate numbers, please generate a
timing report with the post Place and Route NCD file.

For more information about the Timing Analyzer, consult the Xilinx Timing
Analyzer Reference Manual; for more information about TRCE, consult the Xilinx
Command Line Tools User Guide "TRACE"™ chapter.

Section 11 - Configuration String Details

Use the "-detail™ map option to print out Configuration Strings

Section 12 - Control Set Information

Command Line Tools User Guide
112 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 7: MAP

Use the "-detail™ map option to print out Control Set Information.

Section 13 - Utilization by Hierarchy

Use the "-detail™ map option to print out the Utilization by Hierarchy section.

Map Report Example 2

Settings
IOB Name Type Direction | I/O Drive Slew Rate
Standard | Strength

CLK IOB Input LVTTL

ONESOUT<0> I0B Output LVTTL 12 SLOW
ONESOUT<1> I0B Output LVTTL 12 SLOW
ONESOUT<2> (03} Output LVTTL 12 SLOW
ONESOUT<3> (03} Output LVTTL 12 SLOW
ONESOUT<4> (@)} Output LVTTL 12 SLOW
ONESOUT<5> I0B Output LVTTL 12 SLOW
ONESOUT<6> I0B Output LVTTL 12 SLOW
RESET IOB Input LVTTL

STRTSTOP IOB Input LVTTL

TENSOUT<0> (03} Output LVTTL 12 SLOW
TENSOUT<1> (03} Output LVTTL 12 SLOW
TENSOUT<2> IOB Output LVTTL 12 SLOW
TENSOUT<3> IOB Output LVTTL 12 SLOW
TENSOUT<4> 10B Output LVTTL 12 SLOW
TENSOUT<5> (0)3} Output LVTTL 12 SLOW
TENSOUT<6> (0)3} Output LVTTL 12 SLOW
TENTHSOUT<0> (0)3} Output LVTTL 12 SLOW
TENTHSOUT<1> 10B Output LVTTL 12 SLOW
TENTHSOUT<2> 10B Output LVTTL 12 SLOW
TENTHSOUT<3> IOB Output LVTTL 12 SLOW
TENTHSOUT<4> 10B Output LVTTL 12 SLOW
TENTHSOUT<5> 10B Output LVTTL 12 SLOW
TENTHSOUT<6> (0)3} Output LVTTL 12 SLOW
TENTHSOUT<7> 10B Output LVTTL 12 SLOW
TENTHSOUT<8> (03} Output LVTTL 12 SLOW
TENTHSOUT<9> (03} Output LVTTL 12 SLOW

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 113

Chapter 7: MAP

& XILINXe

The following report is generated from the settings shown (only part of the report is
shown).

Section 7 - RPMs

xcounter/hset

Section 8 - Guide Report

This section describes the guide results after placement.
Re-implemented components are components that were guided, but moved
order to satisfy timing requirements.

Estimated Percentage of guided Components | 73.4%

Estimated Percentage of re-implemented Components | 21.1%
Estimated Percentage of new/changed Components | 5.6%

Estimated Percentage of fully guided Nets | 52.5%

Estimated Percentage of partially guided or unrouted Nets | 47.5%

A final SmartGuide report can be generated after PAR by specifying
the [-smartguide <guidefile[.ncd]>] switch on the PAR command line.

Section 9 - Area Group and Partition Summary

No area groups were found in this design.

Section 10 - Modular Design Summary

Modular Design not used for this design.

Section 11 - Timing Report

This design was not run using timing mode.

Section 12 - Configuration String Details

Use the "-detail™ map option to print out Configuration Strings

114

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 7: MAP

Physical Synthesis Report (PSR) File

The Physical Synthesis report (PSR) file is an ASCII text file that contains information
about the following MAP options:

* Global optimization (-global_opt)

* Retiming (-retiming)

* Equivalent Register Removal (-equivalent_register_removal)
¢ Combinatorial Logic Optimization (-logic_opt)

* Register Duplication (-register_duplication)

e Power fine grain Slice clock gating optimization (-power)

The first part of the report provides information on all of the options except -power, and
contains three sections:

e Physical Synthesis Options Summary - Shows the physical options that were used
for the implementation and the target device for the implementation.

* Optimizations Statistics - Summarizes the number of registers and SRLs
added/removed due to the physical synthesis optimizations.

¢ Optimization Details - Lists the new or modified instances, the optimizations that
impacted that instance, and the overall objective for that optimization.

The possible optimizations that can impact an instance and the overall objective for each
optimization are:

Optimization Obijective Option Causing Optimization

SRL Inferencing Area -global_opt

Synchronous Performance -global_opt speed

Optimization

Reduce Maximum Fanout | Fanout Optimization -register_duplication +
MAX_FANOUT constraint

Replication Fanout Optimization -register_duplication +
MAX_FANOUT constraint

Equivalence Removal Complexity -equivalent_register_removal

Backward Retiming Performance -retiming

Forward Retiming Performance -retiming

Trimming Complexity -global_opt

SmartOpt Trimming Area -global_opt area

If you use the -power high or -power Xxe option, the report will include three
additional sections:

* Power Opt Slice clock gating summary - Shows the option used.

¢ Optimization Statistics - Summarizes Slice register gated and clock enable nets
processed.

* Optimization Details - Lists the modified component instance names, their type,
their respective clock enable net names and the optimization objective (power).

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 115

Chapter 7: MAP

& XILINXe

PSR Report Example
TABLE OF CONTENTS

1) Physical Synthesis Options Summary
2) Optimizations statistics and details

Physical Synthesis Options Summary

---- Options

Global Optimization - ON
Retiming - OFF
Equivalent Register Removal : ON

Timing-Driven Packing and Placement : ON
Logic Optimization - ON
Register Duplication : ON

---- Target Parameters

Target Device : 4vsx25FfF668-12

Optimizations

---- Statistics

Number of registers added by Replication
Number of registers removed by Equivalence Removal
Overall change in number of registers

-—-—- Details

New or modified components

sd_data t 24 1
Removed components

data_addr_n_reg_1

Halting MAP

| | Objective
e (s
| Replication

| Optimization

I

I

To halt MAP, enter Ctrl-C (on a workstation) or Ctrl-Break (on a PC). On a workstation,
make sure that when you enter Ctrl-C the active window is the window from which you
invoked the mapper. The operation in progress is halted. Some files may be left when
the mapper is halted (for example, a MAP report file or a physical constraints file), but
these files may be discarded since they represent an incomplete operation.

116

www.Xilinx.

Command Line Tools User Guide

com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 8

Physical Design Rule Check

The chapter describes the physical Design Rule Check program. This chapter contains
the following sections:

e DRC Overview

e DRC Syntax

* DRC Options

e DRC Checks

¢ DRC Errors and Warnings

DRC Overview

The physical Design Rule Check, also known as DRC, comprises a series of tests to
discover physical errors and some logic errors in the design. The physical DRC is run
as follows:

* MAP automatically runs physical DRC after it has mapped the design.

* Place and Route (PAR) automatically runs physical DRC on nets when it routes
the design.

¢ BitGen, which creates a BIT file for programming the device, automatically runs
physical DRC.

* You can run physical DRC from within FPGA Editor. The DRC also runs
automatically after certain FPGA Editor operations (for example, when you edit a
logic cell or when you manually route a net). For a description of how the DRC
works within FPGA Editor, see the online help provided with FPGA Editor.

* You can run physical DRC from the Linux or DOS command line.

Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6
e Virtex®-4, Virtex-5, and Virtex-6

DRC Input File
The input to DRC is an NCD file. The NCD file is a mapped, physical description of
your design.

DRC Output File
The output of DRC is a TDR file. The TDR file is an ASCII formatted DRC report. The

contents of this file are determined by the command line options you specify with the
DRC command.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 117

Chapter 8: Physical Design Rule Check & XILINX:

DRC Syntax

The following command runs physical DRC:
drc [options] file_name .ncd

* options can be any number of the DRC options listed in DRC Options. Enter options
in any order, preceded them with a dash (minus sign on the keyboard) and separate
them with spaces.

* file_name is the name of the NCD file on which DRC is to be run.

DRC Options

This section describes the DRC command line options.
* -e (Error Report)

¢ -0 (Output file)

* -5 (Summary Report)

* -v (Verbose Report)

¢ -z (Report Incomplete Programming)

-e (Error Report)

This option produces a report containing details about errors only. No details are given
about warnings.

Syntax

-e

-0 (Output file)
This option overrides the default output report file file_name.tdr with outfile_name.tdr.

Syntax

-0 outfile _name .tdr

-s (Summary Report)

This option produces a summary report only. The report lists the number of errors and
warnings found but does not supply any details about them.

Syntax

-s
-v (Verbose Report)

This option reports all warnings and errors. This is the default option for DRC.

Syntax

-V

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 8: Physical Design Rule Check

-z (Report Incomplete Programming)

This option reports incomplete programming as errors. Certain DRC violations are
considered errors when the DRC runs as part of the BitGen command but are considered
warnings at all other times the DRC runs. These violations usually indicate the design is
incompletely programmed (for example, a logic cell has been only partially programmed
or a signal has no driver). The violations create errors if you try to program the device,
so they are reported as errors when BitGen creates a BIT file for device programming. If
you run DRC from the command line without the -z option, these violations are reported
as warnings only. With the -z option, these violations are reported as errors.

Syntax

-Z

DRC Checks

Physical DRC performs the following types of checks:
* Net check

This check examines one or more routed or unrouted signals and reports any
problems with pin counts, 3-state buffer inconsistencies, floating segments,
antennae, and partial routes.

e Block check

This check examines one or more placed or unplaced components and reports any
problems with logic, physical pin connections, or programming.

* Chip check

This check examines a special class of checks for signals, components, or both at the
chip level, such as placement rules with respect to one side of the device.

e All checks
This check performs net, block, and chip checks.

When you run DRC from the command line, it automatically performs net, block, and
chip checks.

In FPGA Editor, you can run the net check on selected objects or on all of the signals
in the design. Similarly, the block check can be performed on selected components or
on all of the design’s components. When you check all components in the design, the
block check performs extra tests on the design as a whole (for example, 3-state buffers
sharing long lines and oscillator circuitry configured correctly) in addition to checking
the individual components. In FPGA Editor, you can run the net check and block check
separately or together.

DRC Errors and Warnings

A DRC error indicates a condition in which the routing or component logic does not
operate correctly (for example, a net without a driver or a logic block that is incorrectly
programmed). A DRC warning indicates a condition where the routing or logic is
incomplete (for example, a net is not fully routed or a logic block has been programmed
to process a signal but there is no signal on the appropriate logic block pin).

Certain messages may appear as either warnings or errors, depending on the application
and signal connections. For example, in a net check, a pull-up not used on a signal
connected to a decoder generates an error message. A pull-up not used on a signal
connected to a 3-state buffer only generates a warning.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 119

Chapter 8: Physical Design Rule Check & XILINX:

Incomplete programming (for example, a signal without a driver or a partially

programmed logic cell) is reported as an error when the DRC runs as part of the BitGen
command, but is reported as a warning when the DRC runs as part of any other program.
The -z option to the DRC command reports incomplete programming as an error instead
of a warning. For a description of the -z option, see -z (Report Incomplete Programming).

120

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 9

Place and Route (PAR)

This chapter contains the following sections:
¢ PAR Overview

* PAR Process

¢ PAR Syntax

¢ PAR Options

¢ PAR Reports

* ReportGen

e Halting PAR

PAR Overview

After you create a Native Circuit Description (NCD) file with the MAP program, you
can place and route that design file using PAR. PAR accepts a mapped NCD file as
input, places and routes the design, and outputs an NCD file to be used by the bitstream
generator (BitGen). See the BitGen chapter.

The NCD file output by PAR can also be used as a guide file for additional runs of
SmartGuide™ in MAP and PAR that may be done after making minor changes to your
design. See the -smartguide (SmartGuide) section. PAR places and routes a design
based on the following considerations:

¢ Timing-driven - The Xilinx® timing analysis software enables PAR to place and
route a design based upon timing constraints.

* Non Timing-driven (cost-based) - Placement and routing are performed using
various cost tables that assign weighted values to relevant factors such as constraints,
length of connection, and available routing resources. Non timing-driven placement
and routing is used if no timing constraints are present.

The design flow through PAR is shown in the following figure. This figure shows a PAR
run that produces a single output design file (NCD).

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 121

Chapter 9: Place and Route (PAR) & XILINXe

NCD
Circuit Description
(Mapped)
PCF
Inputfor Re-Entrant PAR Physical Constraints

e -
|
|
| Guide File PAR
_______________ ™ PAR PAR Report

CSV,PAD, TXT
Pin Information

|

|

|

|

|

|

|

|

|

| GtFl;dE Flle -—] Interme diate
| epor Failing Timespec
: Summary

|

|

|

|

|

|

|

NCD
Circuit Description
(Placed/Routed)

X10090

PAR Device Support

This program is compatible with the following device families:
® Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6
e Virtex®-4, Virtex-5, and Virtex-6

PAR Input Files

Input to PAR consists of the following files:
* NCD file - The Native Circuit Description (NCD) file is a mapped design file.

* PCF file - The Physical Constraints File (PCF) is an ASCII file containing constraints
based on timing, physical placements, and other attributes placed in a UCF or NCF
file. PAR supports all of the timing constraints described in the Constraints Guide.

* Guide NCD file - An optional placed and routed NCD file you can use as a guide
for placing and routing the design.

Command Line Tools User Guide
122 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 9: Place and Route (PAR)

PAR Output Files

PAR Process

Placing

Routing

Output from PAR consists of the following files:

* NCD file — a placed and routed design file (may contain placement and routing
information in varying degrees of completion).

* PAR file — a PAR report including summary information of all placement and
routing iterations.

e PAD file — a file containing I/O pin assignments in a parsable database format.

e (CSV file — a file containing I/O pin assignments in a format supported by
spreadsheet programs.

e TXT file — a file containing I/O pin assignments in a ASCII text version for viewing
in a text editor.

e XRPT file — an XML file format that contains the report data found in various
reports produced during the par invocation

* UNROUTES file - a file containing a list of any unrouted signals.

This section provides information on how placing and routing are performed by PAR, as
well as information on timing-driven PAR and automatic timespecing.

The PAR placer executes multiple phases of the placer. PAR writes the NCD after all
the placer phases are complete.

During placement, PAR places components into sites based on factors such as constraints
specified in the PCF file, the length of connections, and the available routing resources.

If MAP was run with —timing (Timing Driven Packing and Placement) enabled,
placement has already occurred in MAP and therefore, PAR will only route the design.

After placing the design, PAR executes multiple phases of the router. The router
performs a converging procedure for a solution that routes the design to completion
and meets timing constraints. Once the design is fully routed, PAR writes an NCD
file, which can be analyzed against timing.

PAR writes a new NCD as the routing improves throughout the router phases.

Note Timing-driven place and timing-driven routing are automatically invoked if PAR
finds timing constraints in the physical constraints file.

Timing Driven PAR

Timing-driven PAR is based on the Xilinx® timing analysis software, an integrated static
timing analysis tool that does not depend on input stimulus to the circuit. Placement and
routing are executed according to timing constraints that you specify in the beginning
of the design process. The timing analysis software interacts with PAR to ensure that
the timing constraints imposed on your design are met.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 123

Chapter 9: Place and Route (PAR) & XILINXe

PAR Syntax

To use timing-driven PAR, you can specify timing constraints using any of the following
ways:

* Enter the timing constraints as properties in a schematic capture or HDL design
entry program. In most cases, an NCF will be automatically generated by the
synthesis tool.

e Write your timing constraints into a User Constraints File (UCF). This file is
processed by NGDBuild when the logical design database is generated.

To avoid manually entering timing constraints in a UCF, use the Constraints Editor,
which greatly simplifies creating constraints. For a detailed description of how to use
the Constraints Editor, see the Constraints Editor Help included with the software.

* Enter the timing constraints in the Physical Constraints File (PCF), a file that is
generated by MAP. The PCF file contains any timing constraints specified using the
two previously described methods and any additional constraints you enter in the
file. Modifying the PCF file is not generally recommended.

If no timing constraints are found for the design or the Project Navigator "Ignore User
Timing Constraints" option is checked, timing constraints are automatically generated
for all internal clocks. These constraints will be adjusted to get better performance

as PAR runs. The level of performance achieved is in direct relation to the setting

of the PAR effort level. Effort level STD will have the fastest run time and the lowest
performance, effort level HIGH will have the best performance and the longest run time.

Timing-driven placement and timing-driven routing are automatically invoked if PAR
finds timing constraints in the physical constraints file. The physical constraints file
serves as input to the timing analysis software. For more information on constraints,
see the Constraints Guide.

Note Depending upon the types of timing constraints specified and the values assigned
to the constraints, PAR run time may be increased.

When PAR is complete, you can review the output PAR Report for a timing summary or
verify that the design’s timing characteristics (relative to the physical constraints file)
have been met by running the Timing Reporter And Circuit Evaluator (TRACE) or
Timing Analyzer. TRACE, which is described in detail in the TRACE chapter, issues

a report showing any timing warnings and errors and other information relevant to

the design.

The following syntax places and routes your design:
par [options] infile[.ncd] outfile [pcf _Ffile[.pcf]]

* options can be any number of the PAR options listed in PAR Options. Enter options
in any order, preceded them with a dash (minus sign on the keyboard) and separate
them with spaces.

* infile is the design file you wish to place and route. The file must include a .ncd
extension, but you do not have to specify the . ncd extension on the command line.

* outfile is the target design file that is written after PAR is finished. If the command
options you specify yield a single output design file, outfile has an extension of . ncd.
A .ncd extension generates an output file in NCD format. If the specified command
options yield more than one output design file, outfile must have an extension. The
multiple output files are placed in the directory with the default . ncd extension.

Note If the file or directory you specify already exists, an error messages appears
and the operation is not run. You can override this protection and automatically
overwrite existing files by using the -w option.

124

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 9: Place and Route (PAR)

pcf_file is a Physical Constraints File (PCF). The file contains the constraints you entered
during design entry, constraints you added using the User Constraints File (UCF) and
constraints you added directly in the PCF file. If you do not enter the name of a PCF
on the command line and the current directory contains an existing PCF with the infile
name and a . pcT extension, PAR uses the existing PCF.

Example 1
par input.ncd output.ncd

This example places and routes the design in the file Input .ncd and writes the placed
and routed design to output .ncd.

Note PAR will automatically detect and include a PCF that has the same root name as
the input NCD file.

Example 2
par -k previous.ncd reentrant.ncd pref.pcf

This example skips the placement phase and preserves all routing information without
locking it (re-entrant routing). Then it runs in conformance to timing constraints found
in the pref.pcf file. If the design is fully routed and your timing constraints are not
met, then the router attempts to reroute until timing goals are achieved or until it
determines it is not achievable.

Detailed Listing of Options

This section describes PAR options in more detail. The listing is in alphabetical order.
* -activity_file (Activity File)

¢ -clock_regions (Generate Clock Region Report)
e -f (Execute Commands File)

e -intstyle (Integration Style)

e filter (Filter File)

* -k (Re-Entrant Routing)

e -mt (Multi-Threading)

* -nopad (No Pad)

¢ -ntd (Non Timing Driven)

e ol (Overall Effort Level)

* -p (No Placement)

e -pl (Placer Effort Level)

e -power (Power Aware PAR)

¢ -1 (No Routing)

e -rl (Router Effort Level)

¢ -smartguide (SmartGuide)

e -t (Starting Placer Cost Table)

e -ub (Use Bonded I/Os)

* -w (Overwrite Existing Files)

e -x (Performance Evaluation Mode)
e -xe (Extra Effort Level)

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 125

Chapter 9: Place and Route (PAR) & XILINXe

-activity_file (Activity File)

This option lets you specify a switching activity data file to guide power optimizations.

Syntax
-activity Ffile activity Ffile .{vhdl|saif}
PAR supports two activity file formats, .saif and .vcd.

This option requires the use of the ~power option.

-clock_regions (Generate Clock Region Report)
Use this option to specify whether or not to generate a clock region report when the
PAR process is run.
Syntax
-clock regions generate _clock region_report

This report contains information on the resource utilization of each clock region and lists
and clock conflicts between global clock buffers in a clock region.

-f (Execute Commands File)

This option executes the command line arguments in the specified command_file.

Syntax
-f command_file

For more information on the - option, see -f (Execute Commands File) in the
Introduction chapter.

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax
-intstyle ise|xflow]|silent

When using —intstyle, one of three modes must be specified:
e -—intstyle ise indicates the program is being run as part of an integrated design

environment.

e -—intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e -—intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

-filter (Filter File)

This option specifies a filter file, which contains settings to capture and filter messages
produced by the program during execution.

Command Line Tools User Guide
126 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 9: Place and Route (PAR)

Syntax
-filter [filter_file]
By default, the filter file name is filter_filter.

-k (Re-Entrant Routing)

This option runs re-entrant routing, starting with existing placement and routing. By
default this option is off.

Syntax

-k previous_NCD.ncd reentrant.ncd

Routing begins with the existing placement and routing as a starting point; however,
routing changes may occur and existing routing resources not kept.

Reentrant routing is useful to manually route parts of a design and then continue
automatic routing; for example, to resume a prematurely halted route (Ctrl-C), or to run
additional route passes.

Note For Virtex®-5 devices, only the Route Only and Reentrant Route options are
available. By default, this property is set to Route Only for Virtex-5 devices, and Normal
Place and Route for all other devices.

-mt (Multi-Threading)

This option lets PAR use more than one processor. It provides multi-threading
capabilities to the Placer.

Note This option is available for Spartan®-6, Virtex®-6, and Virtex-5 devices only.
Multithreading is not available when you are using -smartguide, -power on, -X,
partitions, or a project without a PCF file.

Syntax
-mt off|2]3]4

The default is off. When ofT, the software uses only one processor. When the value is
2, 3, or 4 the software will use up to the number of cores that are specified.

-nopad (No Pad)

This option turns off creation of the three output formats for the PAD file report.

Syntax
-nopad

By default, all three PAD report types are created when PAR is run.

-ntd (Non Timing Driven)

This option tells PAR to perform non-timing driven placement.

Syntax
-ntd

When the -ntd switch is enabled, all timing constraints are ignored and the
implementation tools do not use any timing information to place and route the design.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 127

Chapter 9: Place and Route (PAR) & XILINXe

Note This option is available for both MAP and PAR, to run the entire flow without
timing constraints set the -ntd switch for both MAP and PAR.

-ol (Overall Effort Level)

This option sets the overall PAR effort level.

Syntax

-ol std]high

¢ Use std for low effort level (fastest runtime at expense of QOR)
* Use high for high effort level (best QOR with increased runtime)
The default effort level is high for all architectures.

The -ol option is available when running timing-driven packing and placement with
the —~timing option.

Note Xilinx® recommends setting the MAP effort level to equal or higher than the
PAR effort level.

Example
par -ol std design.ncd output.ncd design.pcf

This example sets the overall PAR effort level to std (fastest runtime at expense of QOR).

-p (No Placement)

This option tells PAR to bypass the placer and proceed to the routing phase. A design
must be fully placed when using this option or PAR will issue an error message and exit.

Syntax

-p
When you use this option, existing routes are ripped up before routing begins. To leave
existing routing in place, use the -k (Re-Entrant Routing) option instead of -p.

Note Use this option to maintain a previous NCD placement but rerun the router.

Example
par -p design.ncd output.ncd design.pcf

This example tells PAR to skip placement and proceed directly to routing. If the design
is not fully placed you will get an error message and PAR will do nothing.

-pl (Placer Effort Level)

This option sets the Placer effort level for PAR, overriding the overall effort level setting.

Note This option is available only for Spartan®-3, Spartan-3A, Spartan-3E, and
Virtex®-4 devices. For other devices, use -0l (Overall Effort Level).

128

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 9: Place and Route (PAR)

Syntax
-pl std]high

* Use std for a fast run time with lowest placing effort. This setting is appropriate
for less complex designs.

e Use high for the best placing results but longer run time. This setting is appropriate
for more complex designs.

The default effort level when you use -pl is std.

Example
par -pl high design.ncd output.ncd design.pcf

This example overrides the overall effort level set for PAR and sets the Placer effort
level to high.

-power (Power Aware PAR)

This option tells PAR to optimize the capacitance of non-timing critical design signals.

Syntax
-power [on]off]

The default setting for this option is 0Ff. When you use -power on, you may also
specify a switching activity file to guide power optimization. See the -activity_file
(Activity File) option.

-r (No Routing)

This option tells PAR to skip routing the design after it has finished placement.

Syntax
-r
Note To skip placement on a design which is already fully placed, use the —p (No
Placement) option.
Example
par -r design.ncd route.ncd design.pcf

This example causes the design to exit before the routing stage.

-rl (Router Effort Level)

This option sets the Router effort level for PAR, overriding the overall effort level setting.

Note This option is available only for Spartan®-3, Spartan-3A, Spartan-3E, and
Virtex®-4 devices.

Syntax
-rl std]high

¢ Use std for a fast run time with lowest routing effort. This setting is appropriate
for less complex designs.

¢ Use high for the best routing results but longer run time. This setting is appropriate
for more complex designs.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 129

Chapter 9: Place and Route (PAR) & XILINXe

The default effort level when you use -r1 is std.

Example
par -rl high design.ncd output.ncd design.pcf

This example overrides the overall effort level set for PAR and sets the Router effort
level to high.

-smartguide (SmartGuide)

This option instructs the program to use results from a previous implementation to guide
the current implementation, based on a placed and routed NCD file. SmartGuide™
technology automatically enables timing-driven packing and placement in MAP (map
—timing), which improves design performance and timing for highly utilized designs.

You may obtain better results if you use the map -timing option to create a placed and
routed NCD guide file before enabling SmartGuide technology. SmartGuide technology
can be enabled from the command line or from the Hierarchy pane of the Design panel
in Project Navigator.

Syntax

-smartguide design_name .ncd

With SmartGuide technology, all guiding is done in MAP at the BEL level. Guiding
includes packing, placement, and routing. SmartGuide technology optimally changes
the packing and placement of a design and then routes new nets during PAR. The first
goal of SmartGuide technology is to maintain design implementation on the unchanged
part and meet timing requirements on the changed part; the second goal is to reduce
runtime. Notice that the unchanged part of the implementation will not be changed and
therefore will keep the same timing score. Paths that fail timing but do not change
should be 100% guided. Paths that fail timing and are changed will be re-implemented.

The results from the MAP run are stored in the output map report file (.mrp). Guide
statistics, including the number of guided nets and all new, guided, and re-implemented
components are listed in the map report, which is an estimated report. The final statistics
are listed in the PAR report file (. par). A separate guide report file (. grf) is generated
by PAR. If you use -smartguide in the PAR command line, a detailed guide report file
is created. If you do not use -~smartguide, a summary guide report file is created. The
guide report file lists components and nets that are re-implemented or new. For more
information and an example, see Guide Report file (GRF) in this chapter.

-t (Placer Cost Table)

This option specifies the cost table used by the placer.

Syntax

-t [placer_cost_table]

placer_cost_table is the cost table used by the placer. Valid values are 1-100 and the
default is 1.

To create implementations using several different cost tables, please refer to the
SmartXplorer section in this document.

Note The PAR option, -t is available for Spartan®-3, Spartan-3A, Spartan-3E, and
Virtex®-4 devices only. For other devices, to explore cost tables, use the MAP option
-t (Starting Placer Cost Table) instead.

130

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 9: Place and Route (PAR)

Example
par -t 10 -pl high -rl std design.ncd output_directory design.pcf

In this example, PAR uses cost table 10. The placer effort is at the highest and the
router effort at std.

-ub (Use Bonded 1/0Os)

This option also allows PAR to route through bonded 1/O sites.

Syntax
-ub

By default (without this option), I/O logic that MAP has identified as internal can only
be placed in unbonded I/O sites. If you specify this option, PAR can place this internal
I/O logic into bonded 1/O sites in which the I/O pad is not used. If you use this option,
make sure this logic is not placed in bonded sites connected to external signals, power,
or ground. You can prevent this condition by placing PROHIBIT constraints on the
appropriate bonded I/O sites. For more information on constraints, see the Constraints
Guide.

-w (Overwrite Existing Files)

This option instructs PAR to overwrite an existing NCD file.

Syntax
-W

By default (without this option), PAR will not overwrite an existing NCD file. If the
specified NCD exists, PAR gives an error and terminates before running place and route.

-X (Performance Evaluation Mode)

This option tells PAR to Ignore any timing constraints provided and generate new
timing constraints on all internal clocks.

Syntax
=X

Use this option if there are timing constraints specified in the physical constraints file,
and you want to execute a PAR run with tool-generated timing constraints instead to
evaluating the performance of each clock in the design. This operation is referred to
as Performance Evaluation Mode. This mode is entered into either by using the —-x
option or when no timing constraints are used in a design. The tool-generated timing
constraints constrain each internal clock separately and tighten/loosen the constraints
based on feedback during execution. The PAR effort level controls whether the focus is
on fastest run time (STD) or best performance (HIGH).

PAR ignores all timing constraints in the design.pcf, and uses all physical constraints,
such as LOC and AREA_RANGE.

-xe (Extra Effort Level)

Use this option to set the extra effort level.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 131

Chapter 9: Place and Route (PAR) & XILINXe

Syntax

PAR Reports

-xe njc

n (normal) tells PAR to use additional runtime intensive methods in an attempt to meet
difficult timing constraints. If PAR determines that the timing constraints cannot be met,
then a message is issued explaining that the timing cannot be met and PAR exits.

¢ (continue) tells PAR to continue routing even if PAR determines the timing constraints
cannot be met. PAR continues to attempt to route and improve timing until little or no
timing improvement can be made.

Note Use of extra effort € can result in extremely long runtimes.

To use the -xe option, you must also set the —ol (Overall Effort Level) option to high or
the —-pl (Placer Effort Level) option and -r1 (Router Effort Level) option be set to high.

Example
par -ol high -xe n design.ncd output.ncd design.pcf

This example directs PAR to use extra effort, but to exit if it determines that the timing
constraints cannot be met.

The output of PAR is a placed and routed NCD file (the output design file). In addition
to the output design file, a PAR run generates a PAR report file with a . par extension. A
Guide Report file (GRF) is created when you specify —~smartguide.

The PAR report contains execution information about the place and route run as well
as all constraint messages. For more information on PAR reports, see the ReportGen
Report and Guide Report file (GRF) sections of this chapter.

If the options that you specify when running PAR are options that produce a single
output design file, the output is the output design (NCD) file, a PAR file, and PAD files.
A GREF is output when you specify —smartguide. The PAR, GRF, and PAD files have
the same root name as the output design file.

Note The ReportGen utility can be used to generate pad report files (. pad, pad. txt,
and pad.csv). The pinout .pad file is intended for parsing by user scripts. The

pad . txt file is intended for user viewing in a text editor. The pad.csv file is intended
for directed opening inside of a spreadsheet program. It is not intended for viewing
through a text editor. See the ReportGen section of this chapter for information on
generating and customizing pad reports.

Reports are formatted for viewing in a monospace (non-proportional) font. If the text
editor you use for viewing the reports uses a proportional font, the columns in the
report do not line up correctly. The pad.csv report is formatted for importing into a
spreadsheet program or for parsing via a user script. In general, most reports generated
by PAR in either separate files or within the . par file are also available in an XML data
file called <design name>_par.xrpt.

Place and Route (PAR) Report

The Place and Route (PAR) report file is an ASCII text file that contains information about
the PAR run. The report information varies based on the device and the options that you
specify. The PAR report contains execution information about the PAR run and shows
the processes run as PAR converges on a placement and routing solution for the design.

132

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 9: Place and Route (PAR)

PAR Report Layout

The PAR report is divided into a number of ordered sections:

* Design Information - Shows the PAR command line, the device to which the design
has been placed and routed, information on the input design files (NCD and PCEF),
and when placement and routing were performed. Warning and information
messages may also appear in this first section of the PAR report.

e Design Summary - Provides a breakdown of the resources in the design and
includes the Device Utilization Summary.

* Placer Results - Lists the different phases of the placer and identifies which phase
is being executed. The checksum number shown is for Xilinx debugging purposes
only and does not reflect the quality of the placer run.

Note When running map -timing and the SmartGuide™ tool, placer results do
not appear in the PAR report file. Placement for these flows is done in MAP.

* Router Results - Lists each phase of the router and reports the number of unrouted
nets, in addition to an approximate timing score that appears in parenthesis.

* SmartGuide Report - Describes the guide results after the router is invoked. This
section of the PAR report accurately reflects the differences between the input
design and the guide design, including the number of guided, re-implemented, and
new or changed components.

¢ Partition Implementation Status - Lists which partitions were preserved and which
partitions were re-implemented and the reasons why they were re-implemented. If
no partitions are found in the design, the PAR report states this.

* Clock Report - Lists, in a table format, all of the clocks in the design and provides
information on the routing resources, number of fanout, maximum net skew for
each clock, and the maximum delay. The locked column in the clock table indicates
whether the clock driver (BUFGMUX) is assigned to a particular site or left floating.

Note The clock skew and delay listed in the clock table differ from the skew and
delay reported in TRACE and Timing Analyzer. PAR takes into account the net
that drives the clock pins whereas TRACE and Timing Analyzer include the entire
clock path.

* Timing Score - Lists information on timing constraints contained in the input PCF,
including how many timing constraints were met. The first line of this section shows
the Timing Score. In cases where a timing constraint is not met, the Timing Score
will be greater than 0. Generally, the lower the Timing Score, the better the result.

Note The constraints table in this section of the PAR report is not generated when
no constraints are given in the input PCF or the -x option is used.

¢ Summary - Lists whether PAR was able to place and route the design successfully.
This section also lists the total time used to complete the PAR run in both REAL time
and CPU time. A summary of the number of error, warning, and informational
messages found during the PAR invocation are listed in this last section of the PAR
report.

Sample PAR Report

This section shows an abbreviated PAR report. Most PAR report files are considerably
larger than the example shown. In this example, the design is run with —smartguide.
Note that the Placer section of the PAR report is not present, since with the SmartGuide
tool, placement is done in MAP. Some lines have been removed to save space.

par -w -intstyle ise -ol high -mt off wave_gen_map.ncd wave_gen.ncd

wave_gen.pcf

Constraints file: wave_gen.pcf.
Loading device for application Rf_Device from file ’6vIx75t.nph” in environment /build/xfndry/M._49/rtf.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 133

Chapter 9: Place and Route (PAR) & XILINXe

"wave_gen" is an NCD, version 3.2, device xc6vIx75t, package ff484, speed -1

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius)

Initializing voltage to 0.950 Volts. (default - Range: 0.950 to 1.050 Volts)

Device speed data version: "ADVANCED 1.05c 2010-02-23".

Device Utilization Summary:

Slice Logic Utilization:

Number of Slice Registers: 569 out of 93,120 1%
Number used as Flip Flops: 568
Number used as Latches: 1
Number used as Latch-thrus: 0
Number used as AND/OR logics: 0
Number of Slice LUTs: 958 out of 46,560 2%
Number used as logic: 854 out of 46,560 1%
Number using 06 output only: 658
Number using 05 output only: 15
Number using 05 and 06: 181
Number used as ROM: 0
Number used as Memory: 0 out of 16,720 0%
Number used exclusively as route-thrus: 104
Number with same-slice register load: 102
Number with same-slice carry load: 2
Number with other load: 0]

Slice Logic Distribution:

Number of occupied Slices: 328 out of 11,640 2%
Number of LUT Flip Flop pairs used: 988
Number with an unused Flip Flop: 569 out of 988 57%
Number with an unused LUT: 30 out of 988 3%
Number of fully used LUT-FF pairs: 389 out of 988 39%
Number of slice register sites lost
to control set restrictions: 0 out of 93,120 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with
one Flip Flop within a slice. A control set is a unique combination of
clock, reset, set, and enable signals for a registered element.

The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.

OVERMAPPING of BRAM resources should be ignored if the design is
over-mapped for a non-BRAM resource or if placement fails.

10 Utilization:
Number of bonded 10Bs: 17 out of 240 7%
10B Flip Flops: 11

Specific Feature Utilization:

Number of RAMB36E1/FIFO36Els: 0 out of 156 0%
Number of RAMB18E1/FIFO18Els: 2 out of 312 1%
Number using RAMB18E1l only: 2
Number using FIFO18E1l only: 0
Number of BUFG/BUFGCTRLs: 3 out of 32 9%
Number used as BUFGs: 3
Number used as BUFGCTRLs: 0
Number of ILOGICE1/1SERDESEls: 0 out of 360 0%
Number of OLOGICE1/0SERDESE1ls: 11 out of 360 3%
Number used as OLOGICEls: 11
Number used as OSERDESEls: (0]
Number of BSCANs: 0 out of 4 0%
Number of BUFHCEs: 1 out of 72 1%
Number of BUFI0DQSs: 0 out of 36 0%
Number of BUFRs: 0 out of 18 0%
Number of CAPTUREs: 0 out of 1 0%
Number of DSP48Els: 0 out of 288 0%
Number of EFUSE_USRs: 0 out of 1 0%
Number of GTXEls: 0 out of 8 0%
Number of I1BUFDS_GTXEls: 0 out of 6 0%
Number of ICAPs: 0 out of 2 0%

Command Line Tools User Guide
134 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 9: Place and Route (PAR)

Number of IDELAYCTRLs: 0 out of 9 0%
Number of 10DELAYEls: 0 out of 360 0%
Number of MMCM_ADVs: 1 out of 6 16%
Number of PCIE_2_Os: 0 out of 1 0%
Number of STARTUPs: 0 out of 1 0%
Number of SYSMONs: 0 out of 1 0%
Number of TEMAC_SINGLEs: 0 out of 4 0%

Overall effort level (-ol): High
Router effort level (-rl): High

INFO:Timing:3386 - Intersecting Constraints found and resolved. For more information, see the TSI report. Please consult the Xilin
Command Line Tools User Guide for information on generating a TSI report.

Starting initial Timing Analysis. REAL time: 22 secs

Finished initial Timing Analysis. REAL time: 22 secs

Starting Router

Phase 1 : 4986 unrouted; REAL time: 24 secs

Average Wirelength on CLB-Grid (driver-load model):
o o o o oo +

AvgWireLen |

| | | |

| Fanout | NumSigs | Sigs(%) | AvgWireLen | Per Pin |

e - e o S +

| 1] 679 | 53.0 | 1.0 | 1.0 |

| 2] 182 | 14.0 | 3.0 | 1.5 |

I 3] 121 | 9.0 | 7.0] 2.3 |

| 4] 53 | 4.0 | 8.0 | 2.0 |

I 10 | 153 | 12.0 | 15.0 | 1.5 |

| 50 | 81 | 6.0 | 122.0 | 2.4 |

I 100 | 4] 0.0 | 1428.0 | 14.3 |

| 500 | 0] 0.0 | 0.0 | 0.0 |

| 5000 | 0] 0.0 | 0.0 | 0.0 |

| 20000 | 0] 0.0 | 0.0 | 0.0 |

| 50000 | 0] 0.0 | 0.0 | 0.0 |

. L S — S I e +

Wirelength distribution for Fanout-1:

o . S +

| Wirelength | Signals | percent |

e . S +

| 0 | 222 | 32.00 |

| 1 | 171 | 25.00 |

I 2 | 113 | 16.00 |

| 3 | 94 | 13.00 |

I 4 | 35 | 5.00 |

| 5 | 10 | 1.00 |

| 6 | 34 | 5.00 |

TS —— T ——— S T ——— +

Total wirelength for fanout 1,2,3 and 4 nets: 3213
Phase 2 : 4451 unrouted; REAL time: 25 secs
Phase 3 : 1632 unrouted; REAL time: 27 secs
Phase 4 : 1632 unrouted; (Setup:0, Hold:2924, Component Switching Limit:0) REAL time: 32 secs
Updating file: wave_gen.ncd with current fully routed design.
Phase 5 : O unrouted; (Setup:0, Hold:2752, Component Switching Limit:0) REAL time: 34 secs
Phase 6 : O unrouted; (Setup:0, Hold:2752, Component Switching Limit:0) REAL time: 34 secs
Phase 7 : O unrouted; (Setup:0, Hold:2752, Component Switching Limit:0) REAL time: 34 secs
Phase 8 : O unrouted; (Setup:0, Hold:2752, Component Switching Limit:0) REAL time: 34 secs
Phase 9 : O unrouted; (Setup:0, Hold:0, Component Switching Limit:0) REAL time: 35 secs
Phase 10 : O unrouted; (Setup:0, Hold:0, Component Switching Limit:0) REAL time: 36 secs

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 135

Chapter 9: Place and Route (PAR)

& XILINXe

Total REAL time to Router completion: 36 secs
Total CPU time to Router completion: 35 secs

Partition Implementation Status

Generating "PAR" statistics.

Generating Clock Report

o o e e R TR B e T +
| Clock Net | Resource |Locked|Fanout|Net Skew(ns)|Max Delay(ns)]|
TR o e R o e +
| clk_rx | BUFGCTRL_XOY1] No | 97 | 0.152 | 1.662 |
T T o R R oo B T e T +
| clk_tx | BUFGCTRL_X0Y2] No | 65 | 1.201 | 1.661 |
T TR o e e o B TP +
| clk_samp | Local|] | 19 | 0.066] 1.039 |
e e e —— Fmm Fom e e +
Jclk_gen_i0/clk_core_ | | | | | |
| 10/mmem_adv_inst_ML_ | | | | | |
| NEW_11 | Local | | 3 | 0.000 | 1.184 |
T T Fom Fom o e +
lclk_gen_i0/clk_core_ | | | | | |
| 10/MMCM_PHASE_CALIBR | | | | | |
JATION_ML_LUT2_7_ML_N | | | | | |
| EW_CLK | Local | | 3] 0.260 | 0.624 |
o o e e B T B T e T +

* Net Skew is the difference between the minimum and maximum routing
only delays for the net. Note this is different from Clock Skew which
is reported in TRCE timing report. Clock Skew is the difference between
the minimum and maximum path delays which includes logic delays.

Timing Score: 0 (Setup: 0, Hold: O, Component Switching Limit: 0)
Number of Timing Constraints that were not applied: 1

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

Constraint | Check | Worst Case | Best Case | Timing | Timing
| | Slack | Achievable | Errors | Score
NET *"1b_ctl_i0/debouncer_i0/meta_harden_s | MAXDELAY | 1.460ns]| 0.540ns| (o]] 0
ignal_in_i0/signal_meta" MAXDELAY = 2 | | | | |
ns | | | | |
NET "'samp_gen_i0/meta_harden_samp_gen_go_ | MAXDELAY | 1.590ns] 0.410ns| (o] | 0
i0/signal_meta"™ MAXDELAY = 2 ns | | | | |
NET "‘clkx_pre_i0/meta_harden_bus_new_i0/s | MAXDELAY | 1.615ns]| 0.385ns]| o]} 0
ignal_meta"™ MAXDELAY = 2 ns | | | | |
OFFSET = IN 5 ns VALID 8 ns BEFORE COMP " | SETUP | 1.692ns] 3.308ns| (o]] 0
clk_pin™ "RISING"] HOLD | 3.441ns]| | (o] 0
OFFSET = OUT 8 ns AFTER COMP *‘clk_pin" | MAXDELAY | 1.778ns]| 6.222ns]| o] 0
NET **clkx_spd_i0/meta_harden_bus_new_i0/s | MAXDELAY | 1.810ns]| 0.190ns]| o]} 0
ignal_meta"™ MAXDELAY = 2 ns | | | | |
NET "‘clkx_nsamp_i0/meta_harden_bus_new_iO | MAXDELAY | 1.810ns]| 0.190ns] o]} 0
/signal_meta™ MAXDELAY = 2 ns | | | | |
NET "uart_rx_i0/meta_harden_rxd_i0/signal | MAXDELAY | 1.810ns] 0.190ns| (o] | 0

136 www.Xilinx.com

Command Line Tools User Guide

UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 9: Place and Route (PAR)

_meta" MAXDELAY = 2 ns | | | | |

TS_clk_tx_to_clk_rx = MAXDELAY FROM TIMEG | SETUP | 3.509ns| 1.491ns]| (o]] 0

RP "TNM_clk_tx™ TO TIMEGRP “TNM_c | HOLD | 0.115ns] | o] 0

Ik_rx" 5 ns DATAPATHONLY | | | | |

TS_clk_rx_to_clk_tx = MAXDELAY FROM TIMEG | SETUP | 3.533ns| 1.467ns] (o] | 0

RP "TNM_clk_rx™ TO TIMEGRP “TNM_c | HOLD | 0.127ns] | o]} 0

Ik_tx"™ 5 ns DATAPATHONLY | | | | |

TS_clk_gen_i0_clk_core_i0_clkoutl = PERIO | SETUP | 3.574ns| 5.746ns| (o]] 0

D TIMEGRP "clk_gen_i0_clk_core_i0 | HOLD | 0.014ns]| | o]} 0

_clkoutl™ TS_clk_pin /7 0.909090909 HIGH 5 | | | | |

0% | | | | |

TS_clk_gen_i0_clk_core_i0_clkoutO = PERIO | SETUP | 3.811ns]| 6.189ns]| o]} 0

D TIMEGRP "clk_gen_i0_clk_core_iO | HOLD | 0.030ns]| | (o]] 0

_clkout0™ TS_clk_pin HIGH 50% | | | | |

COMP *'spi_clk_pin™ OFFSET = OUT 8 ns AFTE | MAXDELAY | 4.402ns| 3.598ns| (o]] 0

R COMP "clk_pin™ "RISING" | | | | |

COMP "spi_clk_pin™ OFFSET = OUT 8 ns AFTE | MAXDELAY | 4.402ns| 3.598ns]| o]} 0

R COMP "clk_pin'™ "FALLING" | | | | |

TS_clk_pin = PERIOD TIMEGRP "clk_pin™ 10 | MINLOWPULSE | 5.840ns]| 4._.160ns]| o] 0

ns HIGH 50% | | | | |

TS_to_bcd = MAXDELAY FROM TIMEGRP "TNM_se | SETUP | 7.736ns]| 12.264ns]| (o] 0

nd_resp_data™ TO TIMEGRP “TNM_to_ | HOLD | 0.415ns] | o] 0

bed_flops™ TS_clk_gen_i0_clk_core_iO_clko | | | | |

uto * 2 | | | | |

TS_clk_samp = MAXDELAY FROM TIMEGRP "TNM_ | SETUP | 347.413ns| 4.587ns| o] 0

clk_samp™ TO TIMEGRP "TNM_clk_samp" | HOLD | 0.108ns]| | (o]] 0
TS_clk_gen_i0_clk_core_i0_clkoutl * 32 | | | | |

TS uart_rx_ctl = MAXDELAY FROM TIMEGRP "T | SETUP | 537.423ns]| 2.577ns] o]} 0

NM_uart_rx_ctl™ TO TIMEGRP "TNM_u | HOLD | 0.091ns]| | (o] | 0

art_rx_ctl” TS_clk_gen_i0_clk_core_i0_clk | | | | |

out0 * 54 | | | | |

TS_uart_tx_ctl = MAXDELAY FROM TIMEGRP T | SETUP | 590.988ns]| 3.012ns]| o] 0

NM_uart_tx_ctl"™ TO TIMEGRP “TNM_u | HOLD | 0.091ns]| | o]} 0

art_tx_ctl”™ TS_clk_gen_i0_clk_core_iO_clk | | | | |

outl * 54 | | | | |

Derived Constraint Report

Review Timing Report for more details on the following derived constraints.

To create a Timing Report, run "trce -v 12 -fastpaths -o design_timing_report design.ncd design.pcf"
or "Run Timing Analysis"™ from Timing Analyzer (timingan).

Derived Constraints for TS_clk_pin

o e e T T T T Fomm e T +
	Period	Actual Period	Timing Errors	Paths Analyzed			
Constraint	Requirement	-----—---—---—- Fommm -]--—————— B e e	- Fom -			
		Direct	Derivative	Direct	Derivative	Direct	Derivative
e e e e S e e S +							
ITS clk_pin	10.000ns	4.160ns] 6.189ns	o] o] o] 139441872]				
] TS_clk _gen_i0_clk_core_i0_clko] 10.000ns]	6.189ns]	6.132ns]	o]} o]} 30713] 139383971				
uto							
TS_to_bcd	20.000ns]	12.264ns	N/A	(o] (o] 139383821] (o]			
TS_uart_rx_ctl	540.000ns] 2.577ns] NZA] o] (o]	150] o]					
] TS_clk _gen_i0_clk_core_i0_clko] 11.000ns]	5.746ns	0.143ns]	o]} o]} 23229 3959				
utl							
TS_uart_tx_ctl	594 .000ns]	3.012ns]	NZA	o]} o]} 92] o]}			
TS_clk_samp	352.000ns]	4.587ns]	NZA] o] (o]	3867] o]			
S S R —— R S RS S —— RS S T ——— S T S T +

All constraints were met.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 137

Chapter 9: Place and Route (PAR)

& XILINXe

Generating Pad Report.
All signals are completely routed.

Total REAL time to PAR completion: 38 secs
Total CPU time to PAR completion: 37 secs

Peak Memory Usage: 569 MB

Placer: Placement generated during map.
Routing: Completed - No errors found.
Timing: Completed - No errors found.
Number of error messages: 0O

Number of warning messages: 0O

Number of info messages: 1

Writing design to file wave_gen.ncd

PAR done!

Guide Report file (GRF)

The Guide Report file (GRF) is an ASCII text file that shows the actual components and
nets that were guided. The GRF has the same summary as the PAR report and also
lists all of the components and nets that were not guided. If a component or net is not
in the GREF, then it was guided. Guided components and nets are not listed in order to
reduce the size of the file.

Guide Report Layout

The Guide Report file (GRF) is divided into a number of sections, including a section

showing the results from using the SmartGuide™ tool.

138

www.Xilinx.com

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 9: Place and Route (PAR)

The SmartGuide Results section is a summary of the guide results after the router
is invoked, and lists the differences between the input design and the guide design
by summarizing the following:

Number of Guided Components—A guided component has the same name in both
the input design and the guide design, and is in the same site in both designs. It may
have different LUT equations, pins, etc.

Number of Re-implemented Components— A re-implemented component’s name
is the same in both the input design and the guide design. Either the component
was not placed in the guide file or the component has been moved in order to meet
the overall timing of the design.

Number of New/Changed Components— A new/changed component is one whose
name could not be found in the guide design, but exists in the input design. The
design source may have changed or synthesis may have changed the name.

Number of Guided Nets— A guided net is one whose source pin is the same in both
the input design and guide design, load pin(s) are the same in both design files, and
it has the exact same routing physically on the device.

Number of partially guided Nets—A partially guided net is one that is in both the
input design and the guide design but some of the route segments are different.

Number of Re-routed Nets— A re-routed net is one that is in both the input design
and the guide design but all of the route segments are different. It has been re-routed
in order to meet the overall timing of the design.

Note SmartGuide does not use net names for guiding, so a change in the net name
will not change the guiding. SmartGuide looks at the source and load pins of a net
to determine if it can be guided.

Number of New/Changed Nets— A new/changed net is one that is only found in the
input design. The design source may have changed or synthesis may have changed
the connections of the net.

In addition to the SmartGuide Results, the GRF gives a detailed list of the following;:

Components that were re-implemented
Components that are new/changed
Networks that were re-implemented

Networks that are new/changed

Command Line Tools User Guide

UG628 (v 12.1) April 19, 2010

www.Xilinx.com 139

Chapter 9: Place and Route (PAR) & XILINXe

Sample Guide Report File

This section shows an abbreviated GRF. A GRF file will usually be larger than the
example shown.

Release 11.1 - par HEAD
Copyright (c) 1995-2009 Xilinx, Inc. All rights reserved.

Tue Oct 17 20:57:38 2009

SmartGuide Results

This section describes the guide results after invoking the Router.
This report accurately reflects the differences between the input design and the guide design.

Number of Components in the input design | 99
Number of guided Components | 99 out of 99 100.0%
Number of re-implemented Components | 0 out of 99 0.0%
Number of new/changed Components | 0 out of 99 0.0%
Number of Nets in the input design | 67
Number of guided Nets | 65 out of 67 97.0%
Number of re-routed Nets | 2 out of 67 3.0%
Number of new/changed Nets | 0 out of 67 0.0%

The following Components were re-implemented.

GLOBAL_LOGICO.
GLOBAL_LOGIC1.

The following Nets are new/changed.

ReportGen

This utility generates reports that are specified on the command line using one or more
of the ReportGen options. ReportGen takes a Native Circuit Description (NCD) file as
input and outputs various pad reports and a log file that contains standard copyright
and usage information on any reports being generated.

Note Some reports require placed and routed NCD files as input.

ReportGen Syntax

The following syntax runs the ReportGen utility:
reportgen [options] infile[.ncd]

* options can be any number of the ReportGen options listed in the ReportGen Options
section of this chapter. Enter options in any order, preceded them with a dash
(minus sign on the keyboard) and separate them with spaces.

* infile is the design file you wish to place and route. The file must include a .ncd
extension, but you do not need to specify the extension.

ReportGen Input Files

Input to ReportGen consists of the following files:

NCD file - a mapped design for FPGA architectures.

Command Line Tools User Guide
140 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 9: Place and Route (PAR)

ReportGen Output Files

Output from ReportGen consists of the following report files:

* DLY file - a file containing delay information on each net of a design.

e PAD file - a file containing I/O pin assignments in a parsable database format.

* CSV file - afile containing I/O pin assignments in a format directly supported by
spreadsheet programs.

e TXT file - a file containing I/O pin assignments in a ASCII text version for viewing
in a text editor.

* CLK_RGN file - a file containing information about the global clock region usage
for a design. Only available for Virtex®-4 and Virtex-5 architectures.

Files output by ReportGen are placed in the current working directory or the path that is
specified on the command line with the -o option. The output pad files have the same
root name as the output design file, but the . txt and .csvV files have the tag pad added
to the output design name. For example, output_pad. txt.

ReportGen Options

You can customize ReportGen output by specifying options when you run ReportGen
from the command line. You must specify the reports you wish to generate.

The PAD report columns show the type of DCI termination being used such as SPLIT

and NONE.

The following table lists available ReportGen options and includes a functional
description and a usage example for each option:

alllcsv|pad | text

Option Function Usage
-clock_regiong Generates a clock region report. reportgen -clock_regions
-delay Generates a delay report. reportgen -delay
-f Reads ReportGen command line reportgen -fcmdfile.cmd
arguments and switches specified in
a command file.
-h Displays ReportGen usage reportgen -h
information and help contents.
-intstyle Reduces screen output to error and reportgen -intstyle
warning messages based on the {ise | xflow | silent}
integration style you are running.
-0 Specifies the report output directory | reportgen -o
and filename.
-pad Generates a pad report file. You reportgen design .ncd -pad
can modify this command by using
-padfmt and/or -padsortcol.
-padfmt Specifies the format in which to reportgen design.ncd -pad

generate a pad report. You must
also specify —-pad when using this
option.

—-padfmt alllcsv | pad | text

-padsortcol

Specifies the columns to display in
a pad report, and the sorting order.
You must also specify -pad when

using this option.

reportgen design.ncd -pad
-padfmt csv -padsortcol 1,
3:5, 8

Use commas to separate values and
ranges. For example, specifying 1,
3:5, 8 generates a pad report sorted

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

www.Xilinx.com

141

Chapter 9: Place and Route (PAR) & XILINXe

Option Function Usage

. on column 1 and displaying columns
Default: No sorting and all columns 1,3,4,5,and 8.

are displayed.

—unrouted_netg Generates an unrouted networks reportgen -unrouted_nets
report.

Halting PAR

You cannot halt PAR with CtrI-C if you do not have Ctrl-C set as the interrupt
character. You need to set the interrupt character by entering stty intr ~Cin the
-login file or .cshrc file.

To halt a PAR operation, enter Ctr1-C. In a few seconds, the following message appears:

Ctrl-C interrupt detected.

STATUS:

M . +
| Most recent SmartPreview on disk: | XXX .ncd |

| Fully placed: | YES |

| Fully routed: | YES |

| SmartPreview status: | ready for bitgen |

| Timing score: | 988 |

| Timing errors: | 25 |

| Number of failing constraints: | 1 |

e o +

Option 3 in the menu below will save the SmartPreview design file and a timing summary in ./SmartPreview.

MENU: Please choose one of the following options:

1. Ignore interrupt and continue processing.

2. Exit program immediately.

3. Preserve most recent SmartPreview and continue (see STATUS above).
4_ Cancel current ’par’ job at next check point.

Note If you started the PAR operation as a background process on a workstation, you
must bring the process to the foreground using the -fg command before you can halt
the PAR operation.

After you run PAR, you can use FPGA Editor on the NCD file to examine and edit the
results. You can also perform a static timing analysis using TRACE or Timing Analyzer.
When the design is routed to your satisfaction, you can use the resulting file as input to
BitGen, which creates the files used for downloading the design configuration to the
target FPGA. For details on BitGen, see BitGen in this document.

Command Line Tools User Guide
142 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 10

SmartXplorer

This chapter contains the following sections:
* What's New in 12.1

¢ SmartXplorer Overview

e Using SmartXplorer

* Selecting the Best Strategy

¢ Running Multiple Strategies in Parallel
¢ Custom Strategies

* SmartXplorer Command Line Syntax

¢ SmartXplorer Reports

¢ Setting Up SmartXplorer to Run on SSH

What's New in 12.1

Synthesis is now supported in SmartXplorer when using the command line. The new
custom file format that was added to support this will also let you specify synthesis and
implementation strategies simultaneously.

In addition, you can do the following with new SmartXplorer options.

* Display area information in the SmartXplorer report table by using the
—area_report option.

* Run power analyzer and display power information in the SmartXplorer report
table by using the —pwo option (command line mode only).

¢ Use power as an additional best strategy selection criterion, if you are using the
—pwo option.

¢ Control TRCE by using the —to option. This option lets you generate verbose TRCE
reports during SmartXplorer runs.

* Apply new built-in strategies for congestion reduction (to improve routability) for
Virtex®-6 and Spartan®-6 families by using the —cr option.

SmartXplorer Overview
Timing closure is one of the most challenging aspects in modern FPGA design. Xilinx®
invests a lot of time and effort helping designers overcome such timing challenges by
* Improving synthesis and implementation algorithms

* Providing graphical analysis tools such as PlanAhead™ and FPGA Editor

Although FPGA tools have become easier to use while offering more and more advanced
features it is difficult to anticipate all design situations. Some of them may stay hidden
until the very last stages of a design cycle, appearing just before delivering the product.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 143

Chapter 10: SmartXplorer & XILINX:

Delivering Timing Closure in the shortest amount of time is the ultimate SmartXplorer goal.

Key Benefits

SmartXplorer has two key features:

e [t automatically performs design exploration by using a set of built-in or custom
implementation strategies to try to meet timing.

Note A design strategy is a set of tool options and their corresponding values that
are intended to achieve a particular design goal such as area, speed or power.

* It lets you run these strategies in parallel on multiple machines, completing the job
much faster.

Design Strategies

SmartXplorer is delivered with a set of predefined strategies. These strategies are tuned
and selected separately for each FPGA family. This selection is revised for each major
release to ensure that we have the best possible correlation with the current software
version.

You may wish to create your own design strategies or scripts based on your own
experience. SmartXplorer lets you integrate these custom strategies into the system and
use them exclusively or combine them with predefined strategies.

SmartXplorer can be very useful in solving end-of-project emergencies. However,
running it regularly to help keep timing results within acceptable range throughout the
project cycle will minimize the likelihood of surprises at the end.

Parallelism

Running several design strategies (jobs) in parallel will let you complete your project
faster. This feature depends on the operating system in use.

On Linux networks - SmartXplorer can run multiple jobs in parallel on different
machines across the network. This can be done in 2 ways:

e If you have a regular Linux network, SmartXplorer manages the job distribution
across the network. For these networks you must provide a list of machines which
can be used.

¢ If you have LSF (Load Sharing Facility) or SGE (Sun Grid Engine) compute farms,
LSF or SGE manages jobs distribution. For these compute farms, you must specify
the number of machines which can be simultaneously allocated to SmartXplorer.

On a single Linux machine - SmartXplorer lets you run several strategies in parallel on
a single machine if it has a multi-core processor or several processors.

On Microsoft Windows - SmartXplorer lets you run several strategies in parallel on a
single machine if it has a multi-core processor or several processors.

Using a Single Linux or Windows Machine

If you do not have access to a Linux servers on a network and can only use your local
computer, make sure your machine has at least one multi-core processor or several
processors.

First you need to estimate how many jobs your machine can run simultaneously.

Theoretically, you can calculate the number of jobs you can run in parallel as follows:

144

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

Number of Jobs = P * C

P is the number of processors

C is the number of cores per processor
For instance, if you have 4 dual-core processors, then you can run 8 jobs in parallel.

However, depending on the available memory;, its speed, the speed of your hard drive,
etc. your computer may not be able to run the maximum number of jobs calculated
using the above formula. In this case you may want to reduce the number of jobs you
execute simultaneously.

Tips Depending on your calculations here are some tips you may use.

* Due to your design size, your machine can run a single strategy one at a time only.
In this case you are obliged to run all strategies sequentially. This can be easily
done overnight.

¢ Trying to solve timing problems, you may work on smaller blocks separately from
the rest of the design. It may happen that your machine is able deal with multiple
strategies in parallel for these blocks. If this is the case, then enable parallel jobs
to save time.

SmartXplorer Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6
e Virtex®-4, Virtex-5, and Virtex-6

Using SmartXplorer

SmartXplorer helps you reach timing closure more quickly by running multiple
strategies and by letting you run them in parallel. This section tells you how to set up
multiple strategies. See Running Multiple Strategies in Parallel for how to run strategies
in parallel.

Starting with the 12.1 release, SmartXplorer supports Xilinx Synthesis Technology (XST)
and Synplify synthesis tools. Before running multiple implementation strategies you can
now execute several synthesis strategies in order to select the best synthesized netlist for
implementation runs. It is not mandatory to use synthesis with SmartXplorer — you may
continue to use SmartXplorer for implementation only.

Note Synthesis in SmartXplorer is supported in command line mode only. It is not
supported from the ISE environment.

When you use synthesis with SmartXplorer, the execution becomes a two phase process
that includes synthesis and implementation.

e Phase 1 (Synthesis) - During this phase, SmartXplorer runs a set of synthesis
strategies in order to identify the best synthesized netlist from performance point
of view. Please note that in the current release, the synthesis tools do not generate
a timing score allowing to select the best results. Each synthesized netlist is run
through a single MAP and PAR (further referred as Quick Implementation) using a
strategy optimized for runtime in order to obtain a timing score for each netlist.

* Phase 2 (Implementation) - During this phase SmartXplorer selects the best
synthesized netlist and runs a set of implementation strategies to meet timing
requirements.

Note If a timing score of 0 is achieved during either the synthesis or implementation
phase, SmartXplorer stops execution. You can use the —ra option in the smartxplorer
command to run all strategies regardless of the achieved timing score.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 145

Chapter 10: SmartXplorer & XILINX:

To run the synthesis and implementation phases in SmartXplorer, specify one of the
following input files:

® XST script file (design . xst) for synthesis using XST. For instance:
smartxplorer -p xc6slx16-2-csg324 -uc stopwatch.ucf -sd ".;ipcore_dir"” stopwatch.xst
e Synplify project file (design . prj) for synthesis using Synplify. For instance:
smartxplorer -p xc6slx16-2-csg324 -uc stopwatch.ucf -sd ".;ipcore_dir" stopwatch.prj

Please refer to the XST and Synplify subsections for more information before launching
SmartXplorer with synthesis.

Running Implementation Strategies Only

To skip the synthesis step and run implementation strategies only, specify the
synthesized netlist (NGC or EDIF) in the SmartXplorer command line. For instance:

smartxplorer -p xc6slx16-2-csg324 -uc stopwatch.ucf -sd ".;ipcore_dir" stopwatch.ngc

Using the Built-In Strategies

SmartXplorer provides several built-in synthesis strategies. For example it provides 7
XST and 5 Synplify strategies for Spartan®-6. In default mode all of these strategies
will be run in order to identify the best netlist from a performance point of view. As
soon as the best netlist is identified, SmartXplorer will run it through the built-in
implementation strategies to obtain the best timing score. You can use the —la option to
obtain a list of the predefined strategies.

Note SmartXplorer lets you create your own custom synthesis and/or implementation
strategies. See Custom Strategies for more information.

Example

For Spartan-6, SmartXplorer provides 7 XST and 7 implementation strategies. Since one
of the predefined implementation strategies will be used as the Quick Implementation
strategy for synthesis runs, SmartXplorer will run 13 strategies in default mode to obtain
the best timing score. To run predefined strategies you can use the following command:
smartxplorer -p xc6slx16-2-csg324 -uc stopwatch.ucf -wd res_dir
-sd ".;ipcore_dir" stopwatch.xst

Once running, SmartXplorer creates a status table to display progress and the final
results summary. Each row in this table represents one of the predefined SmartXplorer
strategies. This can be seen:

e In the Terminal Window.

* In the smartxplorer.html file, located in the directory where SmartXplorer was
launched (unless the —wd option is used). You should use a Web browser to open
this file. See the SmartXplorer Reports section for more information on reports.

These tables are progressively updated during the SmartXplorer run. Following is an
example of an intermediate state (smartxplorer.html):

Command Line Tools User Guide
146 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

Strategy Host Output Status Timing Total
Score Run Time
#STOptReshRedcon_MapRunTime host_1 runl Mone MNone None
®STOptOnehot_MapRunTime None Mone MNone MNone None
#STOnehot_MapRunTime Mone None MWone None None
¥STOptOnehotRedcon_MapRunTime MNone Mone MNone None None
XSTRegbalOptOnehot_MapRunTime None None None None MNone
#STOnehotRedcon_MapRunTime None None MNone HNone None
XSTRegbalOptOnehotReshRedcon_MapRunTime None None Mone None None

During the synthesis phase SmartXplorer will show all synthesis strategies with the
Quick Implementation strategy which is used to obtain the timing score.

Note The strategy in the left column represents the combination of synthesis and
Quick Implementation strategy separated by an underscore (“_"). For example
XSTOptReshRedcon_MapRunTime means that the name of the synthesis strategy
is XSTOptReshRedcon and the name of the Quick Implementation strategy is
MapRunTime.

As soon as all synthesis strategies are completed, SmartXplorer selects the best netlist
based on timing score and runs it using different implementation strategies updating
the HTML report:

Strategy Host Output Status Timing Total
Score Run Time
XSTOptReshRedcon_MapRunTime host_1 rinl Done 11340 Oh 3m 45
#STOptOnehot_MapRunTime host_1 wn2 Done 12893 Oh 7m 545
¥STOnehot_MapRunTime host_1 fun3 Done 12893 Oh 3m 245
#STOptOnehotRedcon_MapRunTime host_1 mwnd Done 12893 0Oh 1m 29s
#STRegbalOptOnehat_MapRunTime hn::sl 1 mﬂi Done ﬁiuz Oh 1m 30s
#STOnehotRedcon_MapRunTime Oh im 19s
__---
¥STRegbalOptOnehotReshRedcon_MapGlobOptLogOptRegDup hosi_1 Mapping None (Oh Om 28s
#STRegbalOptOnehotReshRedcon_MapGlobOptlOReg None Hﬂna Wone Hone Mone
¥5TRegbalOptOnehotReshRedcon_MapRegDup None Mone MNone Mone None
#STRegbalOptOnehotReshRedcon_MapExtraEffortiOReg None None MNone None MNone
#STRegbalOptOnehotReshRedecon_MaplogOptRegDup None Nene MNone None None
#STRegbalOptOnehotReshRedcon_MapExtraEffort2 None None None Hone None

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.Xilinx.com 147

Chapter 10: SmartXplorer & XILINX

In this example, the XSTRegbalOptOnehotReshRedcon synthesis strategy (run7) was
selected as the best after 7 runs as it has the smallest timing score and runtime (the
XSTRegbalOptOnehot has the same timing score, but requires longer runtime). This
strategy is used to run 6 implementation strategies (run8 to runl3). After all runs are
completed the best strategy is highlighted using green (run8) :

Strategy Host Output Status Timing Total
Score Run Time
#STOptReshRedcon_MapRunTime host_1 munl Done 11340 0Oh 3m 45
®STOptOnehot_MapRunTime hosi_1 ng Done 12893 0Oh 7m S4s
XSTOnehot_MapRunTime host_1 N3 Done 12893 0Oh 3m 24s
XSTOptOnehotRedcon_MapRunTime host_1 s Done 12893 0Oh 1m 29s
xSTRegbhalOptOnehot_MapRunTime host_1 nns Done 8907 Oh 1m 30s
KS5ToOnehotRedcon_MapRunTime host_1 mnﬂ Done .12&9.3 Oh 1m 195
¥STRegbalOptOnehotReshRedcon_MapRunTime host_1 Done Oh 1m 25s
—---_
XSTRegbalOptOnehotReshRedcon_MapGlobOptlOReg host_1 Done Oh 1m 295
#STRegbalOptOnehotReshRedcon_MapRegDup host_1 mnlg Done mﬁ Oh 1m 9s
¥STRegbalOptOnehotReshRedcon_MapExtraEffortIOReq host_1 wnil Done 10967 0Oh 1m Ss
®STRegbalOptOnehotReshRedcon_MaplLogOptReqgDup host_1 unl2 Done 10076 Oh 1m 14s
XSTRegbalOptOnehotReshRedcon_MapExtraEffort2 host_1 runl? Done 9714 0Oh 1m 15s

Note For more information on the best strategy selection algorithms in SmartXplorer,
see Selecting the Best Strategy.

The Run Summary table contains several links:

e The link in the Timing Score column provides you with the timing report summary
for the corresponding strategy.

Anteriak (") preceding a cenitraint mdicsled if wis nsl mal,
This may be due to 8 vetup ar beld violatien.

[Werst Eave| Beat Case [Timing Taning

 Bine Chack Shack Ackievable Errors | Score
FTS_Just_dcm]_CLECO_BUF = PERIOD TIMEGEP 'Tnst_dcm]_CLEQ_BUF TS_CLE. HIGH 50% SETUP | 0.155] 4355 3

.HC,_D- [1.310] [ol o
ff$_CLE = PERIOD TIMEGRP "CLE." 4.2 as HIGE 50% hamwerion| ooss[41e] o o

® The link in the Output column opens a combined log file (synthesis, MAP, PAR, etc.)
for the corresponding strategy: stopwatch_sx.log.

Results Directory Structure

Results for each SmartXplorer strategy are stored in separate directories (runl, run2,
run3, ...), all of which are located in the directory where SmartXplorer is launched
(unless the result directory is redefined via the —wd option). In the following example
SmartXplorer was launched from a directory named “smartxplorer_results.”

148

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 10: SmartXplorer

Strateqgy

Host Output

= [sx_labs
= [Dlabl

- W smarbplorer_results

MapTimingExtraEffort host_1 runl #—p——» L_jrunl

MapPhysSynthesis host_1 ng ——+— b Dun2 SmartXplorer
ParHighEffort 1 host_1 un3 &—t—— b Dmn3 Directory
ParHighEffort2 host_1 nd &————b 2 und Structure
MapTimingl host_1 nS @—— . p [uns

MapTiming2 host_1 NG &——t——— 2 runb

MaplselOReg host_1 nn? &——— % p Fun?

b EDlab2

Controlling the number of executed strategies

You can change the total number of strategies using the -m integer option.
e If integer is 13, SmartXplorer runs in default mode

e If integer is 8, SmartXplorer runs 7 synthesis strategies with Quick Implementations
and one implementation strategy for the best netlist

o If integer is 3, SmartXplorer runs 3 synthesis strategies with Quick Implementation.

e If integer is greater than 13, SmartXplorer runs all built-in synthesis and
implementation strategies, and then selects the best implementation strategy
with the smallest timing score and performs additional implementation runs
using different cost tables. For instance, if you specify —m 15, SmartXplorer
run 7 synthesis with Quick Implementation strategies, 6 built-in implementation
strategies, and 2 additional implementation runs using the best strategy and using
Cost tables 2 and 3.

Using XST with SmartXplorer

If you use XST as a synthesis tool, you must use the design . xst script file to enable
synthesis in SmartXplorer. If ISE® Project Navigator is your default design environment,
you will find design . xst in the project directory. This file is automatically generated
by Project Navigator when you launch XST, and it must be used as an input file to
launch SmartXplorer. If you use Xilinx® tools in command line mode, then you must use
the same design . xst script file that you use to run XST in the command line mode.

In order to execute XST strategies in SmartXplorer you should launch SmartXplorer from
the directory where the design . xst file is located. This will require no adjustments
of the design . xst file.

Example

smartxplorer -p xc6slx16-2-csg324 -uc stopwatch.ucf -wd res_dir
-sd ".;ipcore_dir" stopwatch.xst

This command runs all predefined synthesis and implementation strategies and uses
XST for synthesis.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 149

Chapter 10: SmartXplorer & XILINX:

Using Synplify with SmartXplorer

If you use Synplify as a synthesis tool you must use the design .prj Tcl based script
file to enable synthesis in SmartXplorer. This file is automatically created by Synplify.
If you use the Synplify GUI, you must use the same design .prj file that you use

to run Synplify in command line mode.

You must do the following to ensure the correct execution of Synplify from SmartXplorer:

e All references to files and directories in design . prj must contain absolute paths.
This may require some manual modifications of design .prj before running
SmartXplorer.

* design.prj must contain the project -run command. SmartXplorer inserts specific
synthesis options corresponding to the synthesis strategies in front of this command.

¢ In order to execute Synplify strategies in SmartXplorer you should launch
SmartXplorer from the directory containing design .prj. This will require no
additional adjustments to design.prj.

Example

Smartxplorer -p xc6slx16-2-csg324 -uc stopwatch.ucf -wd res dir
-sd ".;ipcore_dir" stopwatch.prj

This command runs all built-in synthesis and implementation strategies and uses
Synplify for synthesis.

Selecting the Best Strategy

Since delivering timing closure in the shortest amount of time is the ultimate
SmartXplorer goal, the timing score and total runtime required to complete a strategy
are the two primary criteria used to identify the best strategy. The following diagram
illustrates the process of identifying the best strategy based on timing score and total
runtime for two strategies (51 and S2):

Tlmﬁcnre (5\\“\‘

TlmScDre (52 u

51 —the best 52 — the bast
”/I;{;’r:Time (\5\1)\\ =

< . \E—

S RunTirme (52}/ 3

51 —the best \I/_ 52 —the hest

51 & 52 —the bedt

Command Line Tools User Guide
150 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 10: SmartXplorer

Starting with 12.1 software, you can use the —pwo option to run XPower Analyzer and
calculate the total power dissipated by the design. If you enable power analysis, power
data will be taken into account for selecting the best strategy. The following diagram
illustrates the best strategy selection algorithm:

¥

51 —the best

21 —the best

L] H

4

51 —the best

RunTime (51)
7

RunTime (82} "
—

21 & 52 —the best

g

52 —the best

52 —the best

Another important criterion for best strategy selection is the area occupied by the
implemented design. Currently SmartXplorer does not take into account area
information in the best strategy identification. However, it helps you to make this choice
by displaying area information in the Run Summary table:

Run Surmmary

Strateqgy

Host Output Status

Timing Luts Slice Total
Score Registers RunTime

host_2 mn2 Routing MNone 54 (1%) 18 (1%) Oh 1m 35s

For more information about area reporting, see -area_report (Area Report Control).

MapGlobOptLogOptReqDup

Running Multiple Strategies in Parallel

There are three things that you must know before trying to start SmartXplorer on
multiple machines:

e How to set up the Xilinx® software environment on each machine.

¢ Where SmartXplorer results will be stored.

e How to pass SmartXplorer the list of machines to be used (host list file).

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

www.Xilinx.com

151

Chapter 10: SmartXplorer & XILINX:

Setting up the Xilinx Environment

First, let’s consider the case of a regular Linux network, where three Linux machines
(L1, L2, and L3) will be used to run design strategies in parallel. In addition, L1 will
be used to launch SmartXplorer.

Before launching a job on L2 (L3), SmartXplorer will automatically setup $XILINX
environment variable on the L2 (L3) machine. For that, it will use the value of $XILINX
from L1. This means that if Xilinx software is installed on:

¢ the network, then L2 (L3) must have access to this installation as well using the
same network mount points so that the network paths defined for L1 are valid for
all machines

e the L1 local disk, then L2 (L3) must have the same version of Xilinx software
installed on a local disk and placed in the directory with same path name as on L1.

This mechanism of using environment variables was created to ensure that each design
strategy will be run under the same conditions. In addition to $XILINX, SmartXplorer
will automatically collect all Xilinx environment variables (having the “XIL_" prefix) set
on L1 and propagate them to L2 and L3.

The same rules must be used for LSF and SGE compute farms — each machine that
will run Xilinx software must be able to use the same Xilinx environment as set on the
machine running SmartXplorer.

Results Storage

Results for each SmartXplorer strategy is stored in a separate directory: runl, run2,
run3, ... All these directories are placed in the same disk area and located in the
directory where SmartXplorer is launched (unless the result directory is redefined via
—wd option). Therefore, all machines must have access to this disk area and read and
write permissions.

Host List File

To run multiple strategies in parallel on multiple machines, you need a host list file
containing a list of the machines to be used by SmartXplorer to run different strategies.

Use the —I option in SmartXplorer command line to specify the host file name. For
instance:

smartxplorer -p xc3s100e-4-vql00 -uc stopwatch.ucf —I
my_hostlist._txt stopwatch_ngc

In this context, there are three possible cases:
* A regular Linux network
¢ LSF or SGE Compute Farms

¢ Microsoft Windows

Using a Regular Linux Network

In the case of a regular Linux network, specify the list of hosts as shown in the following
example (each machine name must be placed on a separate line):

host_1
host_2
host_3
host_3

152

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

The example above uses three machines: host_1, host_2, host_3. Since host_3 is specified
twice, SmartXplorer will run two different strategies on this host.

During a SmartXplorer run, the Run Summary from smartxplorer.html shows the host
name where each strategy was executed:

Run Smmnary

Strategy Host Output Status Timing Luts Slice Total
Score Registers RunTime

MapRunTime host_1 mnl ~ Dome 800 51(1%) 18(1%) Ohim2ds

MapGlobOptLogOptRagDup host_2 mn2 Routing None 54 (1%) 18 (1%) Oh 1m 35s

Using Compute Farms

If you are using an LSF or SGE compute farm you still need a host list file, but the
information you need to provide is different. The definition format for the two
supported compute farms is shown below:

LSF :LSF {"queue_name': "MYQUEUE", "max_concurrent_runs':N,
"bsub_options': "additional_options "}

SGE | :SGE {''queue_name'": "MYQUEUE", "max_concurrent_runs':N,
"gsub_options': additional_options "}

queue_name defines the queue name. You must replace MYQUEUE with an LSF or
SGE queue name.

max_concurrent_runs defines the maximum number of jobs which can be run in
parallel. You must replace N with a positive integer value.

bsub_options lets you define additional LSF options and additional_options must be
replaced by the LSF options. If no options are used, then replace additional_options with
an empty string: """ (two double quotes)

gsub_options lets you define additional SGE options and additional_options must be
replaced by the SGE options. If no options are used, then replace additional_options with
an empty string : """ (two double quotes).

Example

If the queue name is lin64_q, the maximum number of parallel jobs is six and there are no
specific LSF and SGE options; the host list files should contain the following information:

LSF :LSF {"queue_name":"1in64_q", ''max_concurrent_runs':6,
"bsub_options': "}

SGE | :SGE {''queue_name'":"1in64_q", '"'max_concurrent_runs':6,
"qsub_options': "}

Microsoft Windows

On Microsoft Windows, SmartXplorer lets you run several strategies in parallel on a
single machine if it has a multi-core processor or several processors. To run several
strategies on the same machine the name of the machine must be listed several times
in the host list file:

host 1
host 1
host 1

In the above example SmartXplorer will run three strategies simultaneously on the
host_1.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 153

Chapter 10: SmartXplorer & XILINX:

Custom Strategies

SmartXplorer allows you to create a custom strategy file and enter as many strategies as
needed with any combination of options for synthesis, map, and par. You can specify a
strategy file through the -s¥ command line argument.

Note The format of the custom strategy file was changed with the introduction of
synthesis support. The old strategy format is still supported and can be used if you run
SmartXplorer with the implementation flow only. However, you should move to the
new strategy file format as soon as possible. In this section we will present both format.

New Custom Strategy File Format

The new custom strategies file allows you to define your own custom synthesis and/or
implementation strategies.

“u

Note To avoid errors, make sure that you use a comma (”,”) after each closing
parenthesis (“)”) and brace (“}”) except the last brace in the strategy file.

Example (XST)
The following example shows a custom strategy file for use with XST:

This is a custom Strategy file for XST
'spartan6’:

"XST options':

(
{"'name™: "my_xstl",
"xst': "-opt_level 1 —fsm _extract yes'"},
{"name": "my_xst2",
Uxst': "-opt_level 2 —fsm_extract no'},
),
""Map-Par options™:
{"'name™: "my_impll",
"map': " -timing -ol high -xe n -global_opt on -retiming on ",
“par': " -ol high"},
{'name™: "my_impl2",
"map'': " -timing -ol high -xe n ",
“par': " -ol high"},
),

3}
}

The example above is a strategy file with two synthesis (my_xstl and my_xst2) and two
implementation (my_impll and my_impl2) strategies. Both strategies will only be run
for a design targeted to a device of the Spartan®-6 family. The example above can be
used as a template for a user defined strategy file.

Command Line Tools User Guide
154 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

Example (Synplify)
The following example shows a custom strategy file for use with Synplify:

This is a custom Strategy file for Synplify

{
'spartan6’:
" Synplify options™:
(
{"'name™: "my_smpl1",
*synplify”: " set _option -symbolic_fsm_compiler true set _option -de
{""'name™: "my_smpl2",
" synplify'": ' set_option -symbolic_fsm_compiler false "},
"ﬁap—Par options™:
{'name™: "my_impll",
"map'': " -timing -ol high -xe n -global_opt on -retiming on ",
“par': " -ol high"},
{'name™: "my_impl2",
“"map': " -timing -ol high -xe n ",
“"par': " -ol high"},
)!
}1
}

The example above is a strategy file with two synthesis (my_smpll and my_smpl2) and
two implementation (my_impll and my_impl?2) strategies. Both strategies will only be

run for a design targeted to a device of the Spartan-6 family. The example above can be
used as a template for a user defined strategy file.

Old Custom Strategy File Format

The old custom strategy file lets you define your own custom implementation strategies
only. It does not support synthesis strategies. It allows you to enter as many strategies as
needed with any combination of options for map and par. The following example shows
a simple strategy file using the old format:

L
"virtex4':
(
{"'name’: "strategyl”,
"map": " -timing -ol high -xe n -global_opt on -retiming on ",
"par'": " -ol high "},
{'name™: "'strategy2",
"map": ' -timing -ol high -xe n ",
"par'”: " -ol high "}
),
}

The example above is a strategy file with two strategies named strategy1 (line 4) and
strategy 2. (line 7). Both of these strategies will only be run for a design targeted to a
device of the Virtex®-4 family (line 2). The example above can be used as a template
for a user defined strategy file.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 155

Chapter 10: SmartXplorer

& XILINXe

SmartXplorer Command Line Syntax

This section covers the following topics:

* General Command Line Syntax

¢ SmartXplorer Files and Directories

¢ SmartXplorer Options

General Command Line Syntax

Following is the command line syntax for SmartXplorer:

smartxplorer -p PartNumber [-1 HostListFile] [options]
DesignName [.edf|].-ngd]-.ngc]-xst].prj]

* -p (mandatory) specifies the part into which the design is implemented. PartName
must be a complete Xilinx® part name. See -p (Part Name) for more information.

* options can be any combination of SmartXplorer options listed in the SmartXplorer
Options section. Enter options in any order, preceded them with a dash (minus sign
on the keyboard) and separate them with spaces.

* DesignName[.edf]| .ngd] .ngc| .xst] .prj] is the design file that contains the
design you are implementing. The input file type determines the flow which will be
used by SmartXplorer.

- For .edf, .ngd, and .ngc files, SmartXplorer runs implementation strategies only.

— For .xst (XST script) files, SmartXplorer runs a set of XST synthesis strategies,
then selects the best netlist and uses this netlist to run a set of implementation
strategies.

- For .prj (Synplify TCL-based project) files, SmartXplorer runs a set of Synplify
synthesis strategies, then selects the best netlist and uses this netlist to run a set
of implementation strategies.

SmartXplorer Files and Directories

SmartXplorer uses the files and directories shown below.

SmartXplorer Input Files

File Name

Description

DesignName [.edf|] .ngd]
-ngc| -xst] -prijl

The design file, which specifies the flow to be used during SmartXplorer runs.
For more information, see General Command Line Syntax.

Ffilename .ucf

This is a User Constraints File (UCF) containing timing, physical placements,
and other constraints. For more information on using this file, see -uc (UCF
File).For more information on constraints, see the Constraints Guide.

Host List File
(default: smartxplorer_hostlist)

This file contains a list of hosts that the master machine spawns jobs on. For
more information, see -1 (Host List File).

Custom Strategies File

This file contains user defined strategies which can be used instead of built-in
ones. For more information, -sf (Strategy File).

smartxplorer.config

This file is needed to configure the mail server when you use the —n option.
For more information, see -n (Notify).

156

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 10: SmartXplorer

SmartXplorer Output Directories

Output Directory Name

Description

/run[i]

SmartXplorer will generate as many run[i] directories as the number of
strategies run (i being equal to n-1, where n is equal to the total number of
strategies run). Each of these directories will contain all of the reports and files
generated by synthesis, MAP, PAR, and TRACE set by the associated strategy.

SmartXplorer Output Files

Output File Name

Description

smartxplorer.html

This is a SmartXplorer report in HTML format that dynamically updates while
SmartXplorer is running. For more information, see SmartXplorer Reports.

smartxplorer._txt

Reports

This file shows details about all of the strategies run, and reports the best
strategy at the end of the report. For more information, see SmartXplorer

DesignName_sx.log

This log file contains the standard output from different steps of the flow
(synthesis, MAP, PAR, etc.). This file is created for each run strategy and
located in the run[i] directory. For more information, see SmartXplorer Reports

SmartXplorer Options

The following command line options available for SmartXplorer.

-area_report (Area Report Control)

-area_report (Area Report Control)

-b (Batch Mode)

-cr (Congestion Reduction)
-1 (Host List File)

-la (List All Strategies)

-m (Max Runs)

-mo (MAP Options)

-n (Notify)

-p (Part Number)

-po (PAR Options)

-pwo (Power Options)

-ra (Run All Strategies)
-rcmd (Remote Command)
-sd (Source Directory)

-sf (Strategy File)

-to (TRCE Options)

-uc (UCEF File)

-vp (Variability Passes)
-wd (Write Directory)

This option lets you control the area data which is displayed in SmartXplorer reports.

Command Line Tools User Guide

UG628 (v 12.1) April 19, 2010

www.Xilinx.com

157

Chapter 10: SmartXplorer & XILINX:

By default SmartXplorer reports show the number of LUTs and Slice Registers.

Strategy Host Output Status Timing Luts Slice Total
Score Registers RunTime

Two values are displayed for each FPGA resource.

— The first value is the absolute number of the corresponding FPGA resource (in the
above example the design implementation uses 51 LUTs)

— The second value (in parentheses) is the utilization percentage for the target FPGA
(in the above example the design uses only 1% of the available LUTs)

Syntax

-area_report [on]off]column_spec]]

On (the default) turns the Area Report on and displays the number of LUTs and Slice
Registers.

Off turns the Area Report off.

column_spec lets you modify the columns that are shown in the table. You can specify
multiple values simultaneously by putting the values between double quotes and
separating the values with “;” (semicolons). The order of values represents the order of
corresponding columns in the generated table.

Option Column Name
lut LUTs

slice_reg Slice Registers
slice Slices

bram BRAMs

dsp48 DSP48s
mult18x18 MULT18x18s

Note In the case of BRAMs only the absolute number of BRAMs used is provided.
Example
-area_report “slice;lut;dsp48”

Strategy Host Output Status Timing Slices Luts DSP48s Total
Score RunTime

-b (Batch Mode)

This option runs SmartXplorer in batch mode.
This option runs SmartXplorer in batch mode.

By default SmartXplorer updates standard output in real time. As a result, the output
cannot be redirected to a file and SmartXplorer cannot be run as a background process.
Use -batch_mode to redirect screen output to a file or to run SmartXplorer in the
background.

Syntax
-b

158

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

-batch_mode

-cr (Congestion Reduction)

This option instructs SmartXplorer to run dedicated built-in implementation (MAP and
PAR) strategies for congestion reduction (to improve routability) for Virtex®-6 and
Spartan®-6 families. These dedicated strategies will be used instead of the standard
built-in strategies created for Virtex-6 and Spartan-6.

Syntax

-cr

-congestion_reduction

Note To list the congestion reduction strategies use —Cr and -la together.

-l (Host List File)

This option specifies a host list file, which contains a list of machine names to use for
running SmartXplorer strategies.

Syntax

-1 host_list_file

-host_list host _list_file

By default, SmartXplorer will look for a file named smartxplorer.hostlistin
launch directory. If you use this file, you do not need to use the —l option. For more
information on host lists, see Host List File.

-la (List All Strategies)

This option tells SmartXplorer to list all built-in strategies for a given device family.
When using this option, SmartXplorer only lists the strategies and exits. It does not
spawn any jobs.

Syntax

-la

-list_all_strategies

Note This option must be used with the —part option to get a listing of all the strategies.

Example (List XST Strategies)

To list XST synthesis and implementation strategies, you must specify an XST script file
(DesignName.xst) as an input file.

smartxplorer -p xc6slx16-3-csg324 —la stopwatch.xst

Example (List Synplify Strategies)

To list Synplify synthesis and implementation strategies, you must specify a Synplify
project file (DesignName.prj) as an input file.

smartxplorer -p xc6slx16-3-csg324 —la stopwatch.prj

Example (List Implementation Strategies)

To list implementation strategies only, use the following command.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 159

Chapter 10: SmartXplorer & XILINX:

smartxplorer -p xc6slx16-3-csg324 —la stopwatch.ngc
or
smartxplorer -p xc6slx16-3-csg324 —la

The following example shows implementation strategies displayed by this option (some
lines have been removed to conserve space).

smartxplorer -p xc6slx16-3-csg324 -la
====== List OF Strategies for Part xc6slx16-3-csg324 =======

Strategy MapRunTime:

map options: -ol high —w
par options: -ol high

Strategy MapGlobOptlOReg:

map options: -ol high -global_opt speed -pr b —w
par options: -ol high -xe n

-m (Max Runs)

This option specifies the number of strategies to be run by SmartXplorer. Please see
Using the Built-In Strategies for more information.

Syntax
-m number_of runs
-max_runs number_of _runs

If you do not specify —m, SmartXplorer runs all built-in or custom strategies (please note
that if the timing score of 0 is achieved, SmartXplorer stops execution).

Note —vp and —m cannot be used together.

-mo (MAP Options)

This option overrides all map options.

Syntax
-mo options
-map_options options

options are any of the MAP options listed in the MAP chapter. You must enclose these
options in double quotes.

When you use —mo, the specified options will be applied to every strategy, overriding
MAP options specified in built-in or custom strategies.

Command Line Tools User Guide
160 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

ey

The names of the overridden strategies will be marked with a character in the
report, showing that the strategy options were overridden with the options specified in
the SmartXplorer command line:

Run Suminary

Strateqy Host Output Status Timing Luts Slice Total
Score Registers RunTime

MapRunTime® host_1 runi Fouting Mone 51 (1% 18 ({1%) Oh Om 44s

Note If you use both -mo and -po, all strategy files will be ignored, and only the one
specified through -mo and -po will be run.

Example
-mo ""-ol high —w"

This example overrides all MAP options during the SmartXplorer run and replaces them
with the options enclosed in double quotes.

-n (Notify)

This option tells SmartXplorer to send an email or a cell phone text message after all jobs
are completed. This message contains:

¢ The best timing score achieved.

¢ The smartxplorer.txt report file (for more information, please see SmartXplorer
Reports).

Note Cell phone text messaging is only supported if the cell phone subscriber has a text
messaging capabilities and subscription, and is only supported in North America.

Syntax

-n "'useraddr[;useraddr[;...]11
-notify “useraddr[;useraddr[;...-]1]1"

"o

The notify list is specified in quotes with a ";" (semicolon) separating each email address
or cell phone number. Any email addresses or cell phone numbers provided are notified
when the SmartXplorer run has completed.

Example
-notify="userl@myCompany.com, user2@myCompany.com, 8005551234~

Mail Server Setup

By default, SmartXplorer uses the local host as the mail server (SMTP) to send E-mails.
You can override this by setting the XIL_SX_MAIL_SERVER environment variable in the
smartxplorer.config file, as shown below:

Sample "smartxplorer.config" File for Mail Server Configuration

3

"XIL_SX_MAIL_SERVER™: "E-mail_Server._.my_comp.com",

H*HY

End of file

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 161

Chapter 10: SmartXplorer & XILINX:

Note SmartXplorer will not read the smartxplorer .config file unless you set the
XIL_SX_USE_CONFIG_FILE environment variable to a value of 1.

-p (Part Number)

This option specifies the part into which your design is implemented.

Syntax
-p part number

part_number must be a complete Xilinx® part name including device, package and speed
information (example: xc4vIx60-10- ££256).

Note For syntax details and examples, see -p (Part Number) in the Introduction chapter.

-po (PAR Options)

This option overrides all PAR options.

Syntax
-po options
-par_options options

options are any of the PAR options listed in the PAR chapter. You must enclose these
options in double quotes.

When you use —po, the specified options will be applied to every strategy, overriding
PAR options specified in built-in or custom strategies.

%17

The names of the overridden strategies will be marked with a character in the
report, showing that the strategy options were overridden with the options specified in
the SmartXplorer command line:

Run Suminary

Strateqy Host Output Status Timing Luts Slice Total
Score Registers RunTime

MapRunTime® host_1 runi Fouting Mone 51 (1% 18 ({1%) Oh Om 44s

Note If you use both -mo and -po, all strategy files will be ignored, and only the one
specified through -mo and -po will be run.

Example
-po "-ol high -xe n"

This example overrides all PAR options during the SmartXplorer run and replaces them
with the options enclosed in double quotes.

-pwo (Power Options)

This option tells SmartXplorer to run XPower Analyzer for the placed and routed
design and report the total power consumption for the design in the smartxplorer.html
and smartxplorer.txt report files.

Command Line Tools User Guide
162 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

When you specify —pwo, the power information is placed in the Power (mW) column as
shown below:

Run Smminary

Strategy Host Output Status Timing Luts Slice Power Total
Score Registers (mW) RunTime

Syntax

-pwo [off]on]options]

-power_options [off]on]options]

off (the default)

on runs XPower Analyzer with its default options.

options runs XPower Analyzer with the specified options. Options can be any of the
XPWR options specified in the XPower chapter, and they must be enclosed in double
quotes.

Example

-pwo ““-v

This example runs XPower Analyzer with the —v option on the placed and routed
design, and reports the total power consumption for the design.

-ra (Run All Strategies)
This option tells SmartXplorer to run all built-in or user defined strategies.

By default, SmartXplorer saves the best results and exits whenever any of the strategies
meets timing (timing score is equal to 0). Use -ra to override this behavior and continue
to run until all strategies have completed.

Syntax

-ra

-run_all_strategies

-rcmd (Remote Command)
This option specifies which program to use for logging into remote hosts and executing
commands on the host.
Syntax
-rcmd [rsh]ssh]
-remote_command [rsh]ssh]

Allowed values are rsh or ssh. The default is rsh.

-sd (Source Directory)

This option gives users the ability to search other path lists for design files. This is often
used when there are CORE Generator™ or other generated intermediate netlists that
are not in the design directory.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 163

Chapter 10: SmartXplorer & XILINX:

Syntax
-sd "'source_dir_path ;[source _dir_path];..."
-source_dir 'source_dir_path ;[source dir_path];..."

"nn

Specify the path list in double quotes with the directories in the path list separated by ";
(semicolon). The default value is the directory where SmartXplorer is invoked.
Example

-source_dir
"path_to_directoryl;path_to_directory2;path_to_directory3"

This example tells SmartXplorer to search in path_to_directoryl, path_to_directory?2,
and path_to_directory3 before searching in the design directory.

-sf (Strategy File)

This option specifies a custom strategy file that overrides the built-in strategies in
SmartXplorer. For more information, see Using Custom Strategies.

Syntax

-sT strategy File

-strategy File strategy file

-to (TRCE Options)

By default TRCE generates a compact form of the timing report when it is run from
SmartXplorer. This option lets you override default TRCE behavior and personalize the
TRCE report for your needs, for example by creating a verbose report.

Syntax

-to options

options are any of the TRCE options listed in the TRCE chapter, and must be specified
in double quotes.

Example

-to “-v 10~

This example runs TRCE with the -v option set to 10.

-uc (UCF File)

This option specifies a User Constraints File (UCF) for the design. This file may contain
timing, physical placement and other constrains. For more information on constraints,
see the Constraints Guide.

Syntax
-uc ucft _file

-ucFf ucf _File

If you do not use —uc, SmartXplorer looks for design_name . ucf. If the specified UCF
is not found, SmartXplorer looks in the directory specified using the -sd option. If
multiple files with the same name are encountered, SmartXplorer uses the first UCF it
encounters with the name.

164

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

Note If an NGD file is specified as an input design file, then a UCF is not necessary
since all timing, placement, and other attributes are incorporated in the NGD file.

SmartXplorer supports multiple UCF constraint files. To specify multiple files, specify
the file list in double quotes with the files separated by “;”.
Example
-uc “filel.ucf;file2.ucft”
In this example, SmartXplorer will look for Filel.ucf and file2.ucf in the directory
specified using —sd.

-vp (Variability Passes)

This option runs SmartXplorer using a specific strategy (base strategy) with different
Cost Tables to further improve timing. The base strategy (MAP and PAR options) can be
specified:

¢ Directly in the SmartXplorer command using —mo and —po.

* In a custom strategy file.

This option defines the number of cost tables to be used in this mode. For more
information, see Using SmartXplorer.

Syntax

-vp number_of cost_ tables

-variability_passes number_of _cost_tables

Note —vp and —n cannot be used together.

-wd (Write Directory)

This option specifies where to write the output results. If this option is omitted (the
default) SmartXplorer writes the results in the directory from which SmartXplorer was
invoked.

Syntax

-wd write_dir_path

-write_dir write_dir_path

SmartXplorer Reports

There are three reports generated by SmartXplorer.
e smartxplorer_html (HTML)

e smartxplorer.txt (text)

e DesignName_sx. log (text)

smartxplorer.htmi
This file is a SmartXplorer report in HTML format. It is located:

¢ Inthe Directory where SmartXplorer is launched, if the —wd option is not specified or

e In the Directory specified in the —wd option

This report consists of several parts, and it is dynamically updated while SmartXplorer
is running.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 165

Chapter 10: SmartXplorer & XILINX:

At the start of the report, just below the copyright, is the command used to invoke this
SmartXplorer run.

smartxplorer -p xc65lxl6-3-c22324 -uc stopwatchoucf -wd res_dir -1 my_hosthst txt -sd " ;ipcore_dn” stopwatchmnge

After the command line is the Run Summary table.

Run Swnimany

Strategy Host Output Status Timing Luts Slice Total
Score Registers RunTime
Ma m“mm 1(1%) 18 (1%) Oh im 295
MapGlobOptLogOptRegDup host_2 Routing None 54 (1%) 1B (1%) Oh 1m 355
MapGlobOptIOReg Mone None MHone MNone Mone Hone Hone
MapRegDup MNone None Mone None MNane None None
MapExtraEffortiOReg Mone Hone Moneg Mone Mone Hone Mane
MapLogOptRegDup None None None None Mone None None
MapExtraEffort2 None Hone Mane None Mone None None

This table contains work progress and the final results summary, and is progressively
updated during the run. Each row in this table represents one of the strategies for this
run, and by default contains the following information:

® Strategy - is the strategy name. Placing your cursor over a strategy name brings a
tool tip that displays the synthesis, map and par options used.

* Host - indicates the host machine where the strategy was executed. Placing your
cursor over the host brings up a tool tip with the type of operating system, how
many processors it has, and memory size.

¢ Output - is a link to the log file (DesignFile_sx.log). The log files contain the standard
output from different steps of the flow (synthesis, map, par) for this strategy when it
runs.

® Status - reflects the current flow step as synthesis, map, etc.

* Timing Score - is the timing score for the strategy. Please note that if the timing
score is equal to 0, then all timing constraints were met using this strategy. The
underscore under the timing score number indicates a link to the timing report
file (DesignFile.twx.html).

® Luts, Slice Registers - is the area information obtained for the current strategy. It
contains two figures. The first one is the absolute number of corresponding resource
(for example: number of LUTs). The second one is the utilization percentage in
the target FPGA.

Note Area information is extracted from the MAP report. You may add additional
area information to the table using the —area_report option.

¢ Power (mW) - is the total power for the design. Please note that it is not visible by
default. You must specify -pwo command line option to run Power Analyzer and
display power information in the report table.

e Total Run Time - is the total runtime accumulated across the entire flow.

In this example, the first strategy (MapRunTime) has been completed. The process took
1 minute and 29 seconds and the final timing score is 800 (timing constrains were not
met). This row has a green background, meaning that this strategy provides the best
timing results so far in the current SmartXplorer run. The MapGlobOptLogOptRegDup
strategy is still running and it is going through the Routing step. All other strategies
have the None status, meaning that they have not been launched yet.

Command Line Tools User Guide
166 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

Below the Run Summary table is the Best Strategy table, which contains the commands
(synthesis, map, etc.) for the best strategy.

Best Strategy: MapRunTime (1wunl), Timing Score: 800, Runtime: 0h 1m 295

Command Lines

map stopwatch.ngd -ol high -w -p xc6slk16-3-c50324 -0 stopwatch_map.ncd /home/test/temp/546235/res_dir
Jrunl/stopwatch.pcf

par stopwatch_map.ncd -ol high -w stopwatch.ncd fhome/test/temp/546235/res_dir/runl/stopwatch.pcf

trce /home/test/temp/546235/res_dir/runl/stopwatch.ncd fhome/test/temp/546235/res_dir
Jrunl/stopwatch.pcf -xml /home,/test/ temp/S46225/res_dir/runl/stopwatch.twx -0 /home/test/tamp/546235
JSres_dir/runl/stopwatch, twr

Below the Best Strategy table is the Environment Variables table, which shows platform
specific environment variables and Xilinx® specific environment variables.

Environment Variables

Name Value

Seiling/12, 1/binding: fuse/bin: /bin: fusr % 11R6/bin: fusrlocal/bin: . /home/test/bin: fusr/shin:
JSproductsvalgnnd-1.9.6,/bin

LO_LIBRARY _PATH /xiline/12.1/bindings: filineg/12. 1 AibAing4: fusr/lib
AILINA Sl 12,1
LM_LICENSE_FILE 11llserver

PATH

smartxplorer.txt

This file is a SmartXplorer report in text format. It is located:
¢ In the Directory where SmartXplorer is launched, if the —wd option is not specified or

¢ In the Directory specified in the —wd option

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 167

Chapter 10: SmartXplorer & XILINX:

The smartxplorer.txt file reports details about all the strategies run. It also reports best
strategy at the end of the report. Following is a sample of a typical smartxplorer.rpt file
(some lines have been removed to save space):

Run index : runl

Map options : -ol high -w

Par options : -ol high

Number of Luts : 51 (%)

Number of Slice Registers 18 (%)

Status : Done

Achieved Timing Score : 900

Current Best (Lowest) Timing Score : 900

Current Best Strategy : MapGlobOptLogOptRegDup

HHH R R R
BestStrategy : MapLogOptRegDup
##

Run index I runé

Map options : -ol high -xe n -logic_opt on -t 2 -w
Par options : -ol high -xe n

Number of Luts - 51 (%)

Number of Slice Registers 18 (%)

Achieved Timing Score 800

##
Total Real Time:482.5(secs)
SmartXplorer Done

DesignFile_sx.log

This is a log file (text) containing the standard output from different steps of the flow
(synthesis, map, par, etc.). This file is created for each run strategy and located in the
run[i] directory.

Setting Up SmartXplorer to Run on SSH

SmartXplorer submits jobs to different machines through two different protocols,

RSH and SSH. The default protocol is RSH. However, users can specify SSH through
the -rcmd command line argument. When SSH is used, the user who launches
SmartXplorer is required to have SSH configured so no passwords are required.
SmartXplorer will not be able to run if SSH requires password. The following sequence
of Linux commands can be used to configure SSH so no passwords are needed:

To Set Up SmartXplorer to Run on SSH
1. If you already have an SSH configuration and wish to back it up:
$ cp -r $HOME/.ssh $HOME/ .ssh_bak
2. Run the following commands to generate public and private keys:

$ mkdir -p $HOME/.ssh
$ chmod 0700 $HOME/.ssh
$ ssh-keygen -t dsa -f $HOME/.ssh/id_dsa -P "

This should result in two files: $HOME/ .ssh/id_dsa and $HOME/
-ssh/i1d_dsa.pub

Command Line Tools User Guide
168 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 10: SmartXplorer

3. Run the following commands to configure:

$ cd $HOME/.ssh

$ touch authorized_keys2

$ cat id_dsa.pub>>authorized_keys2
$ chmod 0600 authorized_keys2

4. Depending on the version of OpenSSH the following commands may be omitted:
$ In -s authorized _keys2 authorized keys

5. You are now set to run SSH without a password. To test, just type:
$ ssh <hostname>uname -a

Please consult your system administrator if you still require a password with SSH after
performing the previous steps.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 169

Command Line Tools User Guide
170 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 11

XPower (XPWR)

This chapter is about the XPWR (XPower) command line tool, and contains the following
sections:

e XPower Overview

e XPower Syntax

¢ XPower Options

¢ XPower Command Line Examples
¢ Using XPower

¢ Power Reports

XPower Overview
XPower provides power and thermal estimates after PAR, for FPGA designs, and after
CPLDFit, for CPLD designs. XPower does the following;:
* Estimates how much power the design will use
¢ Identifies how much power each net or logic element in the design is using

* Verifies that junction temperature limits are not exceeded

XPower Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

e Virtex®-4, Virtex-5, and Virtex-6

¢ CoolRunner™ XPLA3 and CoolRunner-II

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 171

Chapter 11: XPower (XPWR) £ XILINX:

Files Used by XPower

XPower uses the following file types:

e CXT - A file produced by CPLDFit and used by XPower to calculate and display
power consumption.

* NCD - A physical design file produced by MAP and PAR that contains information
on an FPGA. You should use a fully placed and routed NCD design (produced
by PAR) to get the most accurate power estimate. Using a mapped-only NCD
(produced by MAP) file may compromise accuracy.

¢ PCF - An optional ASCII Physical Constraints File (PCF) produced by MAP. The
PCF contains timing constraints that XPower uses to identify clock nets switching
rates (by using the period constraint). Temperature and voltage information is also
available if these constraints have been set in the User Constraints File (UCF).

* VCD - An output file from simulators. XPower uses this file to set frequencies and
activity rates of internal signals, which are signals that are not inputs or outputs but
internal to the design. For a list of supported simulators, see the “SAIF or VCD Data
Entry” section of this chapter.

* SAIF - An output file from simulators that provides a more condensed form of
switching data. SAIF is generally considerably smaller and processes much faster
than VCD yet should provide similar results.

e XPO - A settings file from XPower. Settings for a design can be saved to an XML file
and then reloaded into XPower for the same design. Data input such as frequencies,
toggle rates, and capacitance loads can be saved to this file to avoid entering the
same information the next time the design is loaded into XPower.

XPower Syntax

Use the following syntax to run XPower from the command line for FPGA devices:

xpwr infile[.ncd] [constraints_file [.pcf]] [options] -o
design_name .pwr

Use the following syntax to run XPower from the command line for CPLD devices:
xpwr infile[.cxt] [options] -o design_name .pwr

infile is the name of the input physical design file. If you enter a filename with no
extension, XPower looks for an NCD file with the specified name. If no NCD file is
found, XPower looks for a CXT file.

constraints_file is the name of the Physical Constraints File (PCF). This optional file is
used to define timing constraints for the design. If you do not specify a PCF, XPower
looks for one with the same root name as the input NCD file. If a CXT file is found,
XPower does not look for a PCF file.

options is one or more of the XPower options listed in XPower Command Line Options.
Enter options in any order, preceded them with a dash (minus sign on the keyboard)
and separate them with spaces.

design_name is the name of the output power report file with a . pwr extension. If a file
name is not specified with the -o option, by default XPower generates a . pwr file with
the same root name as the infile.

Command Line Tools User Guide
172 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 11: XPower (XPWR)

XPower Command Line Options

The following command line options are available for XPower.
e -] (Limit)

e -Is (List Supported Devices)

* -5 (Specify SAIF or VCD file)

* -0 (Rename Power Report)

e -tcl (Tcl Script)

* -v (Verbose Report)

e -wx (Write XML Settings File)

* -x (Specify XML Settings File)

To get a list of these options from the command line, run xpwr -h.

1 (Limit)

This option imposes a line limit on the verbose report.

Syntax
-1 limit

limit is the maximum number of lines to print in a verbose report.

-Is (List Supported Devices)

This option lists the supported Xilinx® devices in the current software installation. You
can restrict the list to a specific architecture.

Syntax
-Is [architecture]

architecture is the architecture for which you want a device list. For example, virtex5

-0 (Rename Power Report)

Specifies the name of the output power report file.

Syntax
-0 reportname .pwr
reportname.pwr is the name of the power report.

If this option is not used, the output power report is the input design filename with
a . pwr extension.

-s (Specify SAIF or VCD file)

This option sets activity rates and signal frequencies using data from an SAIF or VCD file.

Syntax
-s [simdata.[saif|vcd]]
simdata is the name of the SAIF or VCD file to use.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 173

Chapter 11: XPower (XPWR) £ XILINX:

If no file is specified, the software searches for an input design file with a . vcd extension.

-tcl (Tcl Script)

This option specifies a Tcl script that can be used to apply settings.

Syntax
-tcl tcl_script
tel_script is the Tcl script to be used to apply settings.

-v (Verbose Report)

This option specifies a verbose (detailed) power report.

Syntax
-V

See Power Reports for more information.

-wx (Write XML Settings File)

This option instructs XPower to create an XML settings file that contains all of the
settings information from the current XPower run.

Syntax
-wx [userdata .xpa]
userdata.xpa is the XML file in which to store settings information.

If no filename is specified, the output filename is the input design filename with a . xpa
extension.

-X (Specify XML Settings File)

This option instructs XPower to use an existing XML settings file to set the frequencies of
signals and other values.

Syntax
-X [userdata .xpa]
userdata.xpa is the XML file from which to get settings information.

If no filename is specified, XPower searches for a file with the input design filename and
a -Xpa extension.

XPower Command Line Examples

The following command produces a standard report, mydesign. pwr, in which the SAIF
file specifies the activity rates and frequencies of signals. The output loading has not
been changed; all outputs assume the default loading of 10pF. The design is for FPGAs.

xpwr mydesign.ncd mydesign.pcf -s timesim.saif

Command Line Tools User Guide
174 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 11: XPower (XPWR)

The following command does all of the above and generates a settings file called
mysettings.xpa. The settings file contains all of the information from the SAIF file.

xpwr mydesign.ncd mydesign.pcf -s timesim.saif -wx mysettings.xpa

The following command does all of the above and generates a detailed (verbose) report
instead of a standard report. The verbose report is limited to 100 lines.

xpwr mydesign.ncd mydesign.pcf -v -1 100 -s timesim.vcd -wx mysettings.xpa

Using XPower

This section describes the settings necessary to obtain accurate power and
thermal estimates, and the methods that XPower allows. This section refers
specifically to FPGA designs. For CPLD designs, see Application Note XAPP360 at
http://www.xilinx.com/support.

SAIF or VCD Data Entry

The recommended XPower flow uses a, SAIF or VCD file generated from post PAR
simulation. To generate an SAIF or VCD file, you must have a Xilinx® supported
simulator. See the Synthesis and Simulation Design Guide for more information.

Note Due to the increased size and processing time necessary for a VCD file compared
to an SAIF, SAIF is generally recommended.

XPower supports the following simulators:
e ISim

* Mentor Graphics ModelSim

* Cadence NC-SIM

* Synopsys VCS and VCS MX

XPower uses the SAIF or VCD file to set toggle rates and frequencies of all the signals in
the design. Manually set the following;:

* Voltage (if different from the recommended databook values)
* Ambient temperature (default is 25 degrees C)
* Output loading (capacitance and current due to resistive elements)

For the first XPower run, voltage and ambient temperature can be applied from the PCF,
provided temperature and voltage constraints have been set.

To save time if the design is reloaded into XPower, you can create a settings file (XPA).
All settings (voltage, temperature, frequencies, and output loading) are stored in the
settings file. See the -wx (Write XML File) section of this chapter for more information.

Other Methods of Data Entry

All asynchronous signals are set using an absolute frequency in MHz. All synchronous
signals are set using activity rates.

An activity rate is a percentage between 0 and 100. It refers to how often the output of a
registered element changes with respect to the active edges of the clock. For example,

a 100MHz clock going to a flip flop with a 100% activity rate has an output frequency
of 50MHz.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 175

http://www.xilinx.com/support

Chapter 11: XPower (XPWR) £ XILINX:

When using other methods of design entry, you must set the following:
* Voltage (if different from the recommended databook values)

* Ambient temperature (default is 25 degrees C)

* Output loading (capacitance and current due to resistive elements)
¢ Frequency of all input signals

* Activity rates for all synchronous signals

If you do not set activity rates, XPower assumes 0% for all synchronous nets. The
frequency of input signals is assumed to be OMHz. The default ambient temperature is
25 degrees C. The default voltage is the recommended operating voltage for the device.

Note The accuracy of the power and thermal estimates is compromised if you do not
set all of the above mentioned signals. At a minimum, you should set high power
consuming nets, such as clock nets, clock enables, and other fast or heavily loaded
signals and output nets.

Power Reports

This section explains what you can expect to see in a power report. Power reports have
a - pwr extension.

There are three types of power reports:
e Standard Reports (the default)

* Detailed Reports (the report generated when you run the -v (Verbose Report)
command line option)

Standard Reports

A standard report contains the following;:
* A report header specifying;:

— The XPower version

— A copyright message

— Information about the design and associated files, including the design filename
and any PCF and simulation files loaded

— The data version of the information

* The Power Summary, which gives the power and current totals as well as other
summary information.

¢ The Thermal Summary, which consists of:
- Airflow
— Estimated junction temperature
— Ambient temperature
- Case temperature
— Theta J-A

* A Decoupling Network Summary, which contains capacitance values,
recommendations, and a total for each voltage source broken down in individual
capacitance ranges.

* A footer containing the analysis completion date and time.

Command Line Tools User Guide
176 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe Chapter 11: XPower (XPWR)

Detailed Report

A detailed power report includes all of the information in a standard power report, plus
power details listed for logic, signals, clocks, inputs, and outputs of the design.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 177

Command Line Tools User Guide
178 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 12

PIN2UCF

This chapter describes PIN2UCEF. This chapter contains the following sections:
e PIN2UCF Overview

¢ PIN2UCF Command Line Syntax

e PIN2UCF Command Line Options

PIN2UCF Overview
PIN2UCEF is a Xilinx® command line tool that back-annotates pin-locking constraints to
a User Constraints File (UCF).
For FPGA devices, PIN2UCE:
* Requires a successfully placed and routed design
* Reads a Native Circuit Description (NCD) file
For CPLD devices, PIN2UCF:
* Requires a successfully fitted design
e Reads a Guide (GYD) file

PIN2UCEF writes its output to an existing UCF. If there is no existing UCF, PIN2UCF
creates one.

PIN2UCF Design Flow

NCD
(Placed and Routed -- For FPGAs)
or

GYD
(Pin Freeze File -- for CPLDs

PIN2UCF

[1
! l

(Report File) (UCF File

Command Line Tools User Guide

UG628 (v 12.1) April 19, 2010 www.xilinx.com 179

Chapter 12: PIN2UCF

& XILINXe

PIN2UCF Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

o Virtex®-4, Virtex-5, and Virtex-6

¢ CoolRunner™ XPLA3 and CoolRunner-I1

e X(C9500 and XC9500XL

PIN2UCF File Types

File Type Acronym | Devices Extension
Native Circuit Input NCD FPGA -ncd
Description

Guide Input GYD CPLD -gyd
Report Output RPT FPGA and CPLD -rpt

User Constraints File Output UCF FPGA and CPLD -ucf

PIN2UCF Input File

FPGA Designs -The PIN2UCF input for FPGA designs is a Native Circuit Description
(NCD,) file. The minimal input is a placed NCD file. The optimal input is a fully mapped,
placed, and routed NCD file that meets (or nearly meets) timing specifications.

CPLD Designs -The PIN2UCF input for CPLD designs is a Guide (GYD) file. PIN2UCF
replaces the former GYD file mechanism used to lock pins in CPLD designs. Although a
GYD file may still be used to control pin-locking, Xilinx recommends running PIN2UCF
instead of specifying a GYD file.

PIN2UCF Output Files

This section discusses PIN2UCF Output Files and includes:
e PIN2UCEF User Constraints Files (UCF)
e PIN2UCEF Pin Report Files

PIN2UCF User Constraints Files (UCF)

This section discusses PIN2UCF User Constraints Files (UCF) and includes:
e About PIN2UCF User Constraints Files (UCF)

e PIN2UCF User Constraints Files (UCF) PINLOCK Section

¢ Writing to PIN2UCF User Constraints Files (UCF)

e PIN2UCF User Constraints Files (UCF) Comments

About PIN2UCF User Constraints Files (UCF)

PIN2UCEF writes the information from the input file to a User Constraints File (UCF). If
there is no existing UCF, PIN2UCF creates one. If an output.ucf file is not specified
for PIN2UCEF, and a UCF with the same root name as the design exists in the same
directory as the design file, PIN2UCF writes to that file automatically unless there are
constraint conflicts. For more information, see “Writing to PIN2UCF User Constraints
Files (UCF)” below.

180

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 12: PIN2UCF

PIN2UCF User Constraints Files (UCF) PINLOCK Section

PIN2UCEF writes pin-locking constraints to a PINLOCK section in the User Constraints
File (UCF). The PINLOCK section:

* Begins with the statement #PINLOCK BEGIN
* Ends with the statement #PINLOCK END
By default, PIN2UCF does not write conflicting constraints to a UCF.

User-specified pin-locking constraints are never overwritten in a UCF. However, if
the user-specified constraints are exact matches of PIN2UCE-generated constraints,
PIN2UCEF adds a pound sign (#) before all matching user-specified location constraint
statements. The pound sign indicates that a statement is a comment.

To restore the original UCF (the file without the PINLOCK section):
¢ Remove the PINLOCK section
* Delete the pound sign (#) from each of the user-specified statements

PIN2UCEF does not check to see if existing constraints in the UCF are valid pin-locking
constraints.

Writing to PIN2UCF User Constraints Files (UCF)
PIN2UCF writes to a User Constraints Files (UCF) under the conditions shown below:

PIN2UCF Behavior

Condition PIN2UCF Behavior Files Created or Updated

No UCF is present. PIN2UCF creates a UCF pinlock.rpt
and writes the pin-locking .
constraints to the UCF. design_name.uct

UCF is present. PIN2UCF writes to the pinlock.rpt
existing UCF.

The contents in the PINLOCK
section are all pin lock
matches, and there are

no conflicts between the
PINLOCK section and the rest
of the UCF.

The PINLOCK section
contents are all comments and
there are no conflicts outside
of the PINLOCK section.

design_name.uct

There is no PINLOCK section
and no other conflicts in the
UCF.

UCF is present. PIN2UCF writes to the pinlock.rpt
. . existing UCF. PIN2UCF
There are no pin-locking appends the pin-locking
constraints in the UCF, constraints in the PINLOCK
or this file contains some section to the end of the file.
user-specified pin-locking
constraints outside of the
PINLOCK section.

design_name.uct

None of the user-specified
constraints conflict with
the PIN2UCF generated
constraints.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 181

Chapter 12: PIN2UCF

& XILINXe

There are no pin-locking
constraints in the UCF.

There is a PINLOCK section

in the UCF generated from a
previous run of PIN2UCF or
manually created by the user.

None of the constraints in
the PINLOCK section conflict
with PIN2UCF generated
constraints.

Condition PIN2UCF Behavior Files Created or Updated
UCEF is present. PIN2UCF writes to the pinlock.rpt
. existing UCF. PIN2UCF does

The UCF contains some not write the PINLOCK

user-spgaﬁegl pin-locking section. Instead, it exits after

constraints either inside or providing an error message.

outside of the PINLOCK It writes a list of conflicting

section. constraints.

Some of the user-specified

constraints conflict with

the PIN2UCF generated

constraints

UCEF is present. PIN2UCF writes to the pinlock.rpt

existing UCF. PIN2UCF writes
a new PINLOCK section in
the UCF after deleting the
existing PINLOCK section.
The contents of the existing
PINLOCK section are moved
to the new PINLOCK section.

design_name.ucf

PIN2UCF User Constraints Files (UCF) Comments

Comments inside an existing PINLOCK section in a PIN2UCF User Constraints File
(UCF) are never preserved by a new run of PIN2UCEF. If PIN2UCEF finds a CSTTRANS
comment, it equates INST name to NET name and then checks for comments.

PIN2UCF Pin Report Files

If PIN2UCEF discovers conflicting constraints before creating a PINLOCK section in a
User Constraints Files (UCF), it writes to a Report file named pinlock. rpt. The Report
file is written to the current directory by default. Use the pin2ucf -r command line
option to write a Report file to another directory. For more information, see PIN2UCF -r

(Write to a Report File).

The Report file has the following sections:

e PIN2UCF Constraints Conflicts Information
e PIN2UCEF List of Errors and Warnings

PIN2UCF Constraints Conflicts Information

The Constraints Conflicts Information section in a PIN2UCF Report file has the

following subsections.

* Net name conflicts on the pins

e Pin name conflicts on the nets

If there are no conflicting constraints, both subsections contain a single line indicating

that there are no conflicts

The Constraints Conflicts Information section does not appear if there are fatal input
errors, such as missing inputs or invalid inputs.

182

Command Line Tools User Guide

www.Xilinx.com

UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 12: PIN2UCF

PIN2UCF List of Errors and Warnings

The List of Errors and Warnings section in a PIN2UCF Report file appears only if there
are errors or warnings.

PIN2UCF Syntax

The PIN2UCF command line syntax is:

pin2ucf ncd_file.ncd|pin_freeze file .gyd [-rreport file name -o
output _ucf]

* ncd_file is the name of the placed and routed NCD file for FPGA devices, or
* pin_freeze_file is the name of the fitted GYD file for CPLD devices

PIN2UCF Command Line Options

This section describes the PIN2UCF command line options.
e PIN2UCF -o (Output File Name)
e PIN2UCF -r (Write to a Report File)

-0 (Output File Name)

PIN2UCF by default writes a User Constraints Files (UCF) file named ncd_file.uct.
Use this option to:

* Write a UCF with a different root name than the design name

* Write the pin-locking constraints to a UCF with a different root name than the
design name

¢ Write the UCF to a different directory

Syntax

-0 outfile.ucf

-r (Write to a Report File)

PIN2UCEF by default writes a Report file named pinlock. rpt. Use this option to
write a Report file with a different name.

Syntax

-r report_file_name .rpt

Command Line Tools User Guide

UG628 (v 12.1) April 19, 2010 www.xilinx.com 183

Command Line Tools User Guide
184 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 13

TRACE

This chapter is about the Timing Reporter And Circuit Evaluator (TRACE) tool, and
contains the following sections:

e TRACE Overview

* TRACE Syntax

e TRACE Options

* TRACE Command Line Examples
* TRACE Reports

¢ OFFSET Constraints

e PERIOD Constraints

¢ Halting TRACE

TRACE Overview

The Timing Reporter And Circuit Evaluator (TRACE) tool provides static timing
analysis of an FPGA design based on input timing constraints.

TRACE performs two major functions:
* Timing Verification - Verifies that the design meets timing constraints.

* Reporting - Generates a report file that lists compliance of the design against the
input constraints. TRACE can be run on unplaced designs, only placed designs,
partially placed and routed designs, and completely placed and routed designs.

The following figure shows the primary inputs and outputs to TRACE. The Native
Circuit Description (NCD) file is the output design file from MAP or PAR, which has a
-ncd extension. The optional Physical Constraints File (PCF) has a . pcf extension. The
TWR file is the timing report file, which has a . twr extension.

TRACE flow with primary input and output files

PCF
NCD (optional)

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 185

Chapter 13: TRACE

& XILINXe

TRACE Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

e Virtex®-4, Virtex-5, and Virtex-6

e CoolRunner™ XPLA3 and CoolRunner-IT

e XC9500 and XC9500XL

TRACE Input Files

Input to TRACE can be a mapped, a placed, or a placed and routed NCD file, along with
an optional Physical Constraints File (PCF). The PCF is produced by the MAP program
and based on timing constraints that you specify. Constraints can show such things as
clock speed for input signals, the external timing relationship between two or more
signals, absolute maximum delay on a design path, and general timing requirements
for a class of pins.

* NCD file - A mapped, a placed, or a placed and routed design. The type of timing
information TRACE provides depends on whether the design is unplaced (after
MAP), placed only, or placed and routed.

e PCF - An optional, user-modifiable, physical constraints file produced by MAP. The
PCF contains timing constraints used when TRACE performs a static timing analysis.

e XTM file - A macro file, produced by Timing Analyzer, that contains a series of
commands for generating custom timing reports with TRACE. See the Timing
Analyzer Help for information on creating XTM files.

TRACE Output Files

TRACE outputs the following timing reports based on options specified on the
command line:

¢ TWR - default timing report. The -e (error report) and -V (verbose report) options
can be used to specify the type of timing report you want to produce: summary
report (default), error report, or verbose report.

e TWX- XML timing report output by using the -xml option. This report is viewable
with the Timing Analyzer GUI tool. The -e (error report) and -V (verbose report)
options apply to the TWX file as well as the TWR file. See the -xml (XML Output
File Name) section for details.

TRACE generates an optional STAMP timing model with the —stamp option. See the
-stamp (Generates STAMP timing model files) section in this chapter for details.

Note For more information on the types of timing reports that TRACE generates, see
the TRACE Reports section in this chapter.

TRACE Syntax

Use the following syntax to run TRACE from the command line:
trce [options] design[.ncd] [constraint[.pcf]]

options can be any number of the command line options listed in TRACE Options.
Options need not be listed in any particular order unless you are using the -stamp
(Generates STAMP timing model files) option. Separate multiple options with spaces.

design specifies the name of the input design file. If you enter a file name with no
extension, TRACE looks for an NCD file with the specified name.

186

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

constraint specifies the name of a Physical Constraints File (PCF). This file is used to
define timing constraints for the design. If you do not specify a physical constraints file,
TRACE looks for one with the same root name as the input design (NCD) file.

TRACE Options

This section describes the TRACE command line options.
* -a(Advanced Analysis)

* -e (Generate an Error Report)

e -f (Execute Commands File)

» -fastpaths (Report Fastest Paths)

* -intstyle (Integration Style)

e filter (Filter File)

¢ -1 (Limit Timing Report)

¢ -n (Report Paths Per Endpoint)

e -nodatasheet (No Data Sheet)

* -0 (Output Timing Report File Name)

* -5 (Change Speed)

e -stamp (Generates STAMP timing model files)

* -tsi (Generate a Timing Specification Interaction Report)
* -u (Report Uncovered Paths)

* -v (Generate a Verbose Report)

e -xml (XML Output File Name)

-a (Advanced Analysis)

This option is only used if you are not supplying any timing constraints (from a PCF) to
TRACE. The -a option writes out a timing report with the following information:

* An analysis that enumerates all clocks and the required OFFSETs for each clock.

* An analysis of paths having only combinatorial logic, ordered by delay.

This information is supplied in place of the default information for the output timing
report type (summary, error, or verbose).

Syntax
-a

Note An analysis of the paths associated with a particular clock signal includes a hold
violation (race condition) check only for paths whose start and endpoints are registered
on the same clock edge.

-e (Generate an Error Report)
This option causes the timing report to be an error report instead of the default summary
report. See Error Report for a sample error report.
Syntax
-e [limit]

The report has the same root name as the input design and has a . twr extension.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 187

Chapter 13: TRACE £ XILINX:

The optional limit is an integer limit on the number of items reported for each timing
constraint in the report file. The value of limit must be an integer from 0 to 32,000
inclusive. The default is 3.

-f (Execute Commands File)

This option executes the command line arguments in the specified command_file.

Syntax
-f command_file

For more information on the - option, see -f (Execute Commands File) in the
Introduction chapter.

-fastpaths (Report Fastest Paths)
This option is used to report the fastest paths of a design.

Syntax
-fastpaths

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax
-intstyle ise|xflow|silent
When using -intstyle, one of three modes must be specified:

e -intstyle ise indicates the program is being run as part of an integrated design
environment.

e -intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e -intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

-filter (Filter File)

This option specifies a filter file, which contains settings to capture and filter messages
produced by the program during execution.

Syntax
-Filter [Ffilter_file]
By default, the filter file name is Filter_Ffilter.

-I (Limit Timing Report)

This option limits the number of items reported for each timing constraint in the report
file. The limit value must be an integer from 0 to 2,000,000,000 (2 billion) inclusive. If a
-1 is not specified, the default value is 3.

Command Line Tools User Guide
188 www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

Syntax
-1 limit
Note The higher the limit value, the longer it takes to generate the timing report.

-n (Report Paths Per Endpoint)

This option reports paths per endpoint (the default is paths per constraint). You can
limit the number of endpoints to speed up the report.

Syntax
-n limit

limit is the number of endpoints to report, and can be an integer from 0 to 2,000,000,000
(2 billion) inclusive.

Note The higher the limit value, the longer it takes to generate the timing report.

-nodatasheet (No Data Sheet)

This option does not include the datasheet section of a generated report.

Syntax

-nodatasheet

-0 (Output Timing Report File Name)

This option specifies the name of the output timing report. The . twr extension is
optional. If -0 is not used, the output timing report has the same root name as the
input design (NCD) file.

Syntax

-0 report[.twr]

-s (Change Speed)

This option overrides the device speed contained in the input NCD file and instead
performs an analysis for the device speed you specify. -s applies to whichever report
type you produce in this TRACE run. The option allows you to see if faster or slower
speed grades meet your timing requirements.

Syntax
-s [speed]

The device speed can be entered with or without the leading dash. For example, both -s
3 and -s -3 are valid entries.

Some architectures support minimum timing analysis. The command line syntax for
minimum timing analysis is: trace -s min. Do not place a leading dash before min.

Note The -s option only changes the speed grade for which the timing analysis is
performed; it does not save the new speed grade to the NCD file.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 189

Chapter 13: TRACE £ XILINX:

-stamp (Generates STAMP timing model files)

When you specify this option, TRACE generates a pair of STAMP timing model files
(stampfile.mod and stampfile.data) that characterize the timing of a design.

Syntax
-stamp stampfile design.ncd
Note The stamp file entry must precede the NCD file entry on the command line.

The STAMP compiler can be used for any printed circuit board when performing static
timing analysis.

Methods of running TRACE with the STAMP option to obtain a complete STAMP
model report are:

* Run with advanced analysis using the —a option.
* Run using default analysis (with no constraint file and without advanced analysis).
¢ Construct constraints to cover all paths in the design.

* Run using the unconstrained path report (-u option) for constraints which only
partially cover the design.

For either of the last two options, do not include TIGs in the PCF, as this can cause paths
to be excluded from the model.

-tsi (Generate a Timing Specification Interaction Report)

This option tells TRACE to generate a Timing Specification Interaction (TSI) report (also
known as the Constraint Interaction report). You can specify any name for the . tsi file.
The file name is independent of the NCD and PCF names. You can also specify the NCD
file and PCF from which the TSI report analyzes constraints.

Syntax

-tsi designfile _tsi designfile .ncd designfile .pcf

-u (Report Uncovered Paths)

This option reports delays for unconstrained paths optionally limited to the number of
items specified by <limit>. The option adds an unconstrained path analysis constraint to
your existing constraints. This constraint performs a default path enumeration on any
paths for which no other constraints apply. The default path enumeration includes
circuit paths to data and clock pins on sequential components and data pins on primary
outputs.

Syntax
-u limit

The optional limit argument limits the number of unconstrained paths reported for
each timing constraint in the report file. The value of limit must be an integer from 1 to
2,000,000,000 (2 billion) inclusive. If a limit is not specified, the default value is 3.

Command Line Tools User Guide
190 www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

In the TRACE report, the following information is included for the unconstrained path
analysis constraint.

¢ The minimum period for all of the uncovered paths to sequential components.

* The maximum delay for all of the uncovered paths containing only combinatorial
logic.

* For a verbose report only, a listing of periods for sequential paths and delays for
combinatorial paths. The list is ordered by delay value in descending order, and the
number of entries in the list can be controlled by specifying a limit when you enter
the -v (Generate a Verbose Report) command line option.

Note Register-to-register paths included in the unconstrained path report undergoes
a hold violation (race condition) check only for paths whose start and endpoints are
registered on the same clock edge.

-v (Generate a Verbose Report)

This option generates a verbose report. The report has the same root name as the input
design with a . twr extension. You can assign a different root name for the report,
but the extension must be . twr.

Syntax
-v limit

The optional limit used to limit the number of items reported for each timing constraint
in the report file. The value of limit must be an integer from 1 to 32,000 inclusive. If a
limit is not specified, the default value is 3.

-xml (XML Output File Name)

This option specifies the name of the output XML timing report (TWX) file. The . twx
extension is optional.

Note The XML report is not formatted and can only be viewed with the Timing
Analyzer GUI tool. For more information on Timing Analyzer, see the help provided
with the tool.

Syntax
-xml outfile[.twx]

TRACE Command Line Examples

Example 1
trce designl.ncd groupl.pcf

This command verifies the timing characteristics of the design named designl.ncd,
generating a summary timing report. Timing constraints contained in the file
groupl.pct are the timing constraints for the design. This generates the report file
designl.twr.

Example 2

trce -v 10 designl.ncd groupl.pcf -0 output.twr

This command verifies the characteristics for the design named designl.ncd, using
the timing constraints contained in the file groupl. pcf and generates a verbose timing
report. The verbose report file is called output. twr.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 191

Chapter 13: TRACE £ XILINX:

Example 3
trce -v 10 designl.ncd groupl.pcf -xml output.twx

This command verifies the timing characteristics for the design named designl.ncd,
using the timing constraints contained in the file groupl.pcT, and generates a
verbose timing report (TWR report and XML report). The verbose report file is named
designl.twr, and the verbose XML report file is called output. twx.

Example 4
trce -e 3 designl.ncd timing.pcf

This command verifies the timing characteristics for the design named designl.ncd
using the timing constraints contained in the timing file (timing.pcT in this example),
and generates an error report. The error report lists the three worst errors for each
constraint in timing.pc¥. The error report file is named designl.twr.

TRACE Reports

Default output from TRACE is an ASCII formatted timing report file that provides
information on how well the timing constraints for the design are met. The file is written
into your working directory and has a . twr extension. The default name for the file is
the root name of the input NCD file. You can designate a different root name for the file,
but it must have a . twr extension. The . twr extension is assumed if not specified.

The timing report lists statistics on the design, any detected timing errors, and a number
of warning conditions.

Timing errors show absolute or relative timing constraint violations, and include the

following:
¢ Path delay errors - where the path delay exceeds the MAXIMUM DELAY constraint
for a path.

* Net delay errors - where a net connection delay exceeds the MAXIMUM DELAY
constraint for the net.

* Offset errors - where either the delay offset between an external clock and its
associated data-in pin is insufficient to meet the timing requirements of the internal
logic or the delay offset between an external clock and its associated data-out pin
exceeds the timing requirements of the external logic.

¢ Net skew errors - where skew between net connections exceeds the maximum
skew constraint for the net.

To correct timing errors, you may need to modify your design, modify the constraints,
or rerun PAR.

Warnings point out potential problems, such as circuit cycles or a constraint that does
not apply to any paths.

Three types of reports are available: summary, error, and verbose. You determine the
report type by entering the corresponding TRACE command line option, or by selecting
the type of report when using Timing Analyzer (see TRACE Options). Each type of
report is described in Reporting with TRACE.

In addition to the ASCII formatted timing report (TWR) file, you can generate an XML
timing report (TWX) file with the -xml option. The XML report is not formatted and can
only be viewed with Timing Analyzer.

Timing Verification with TRACE

TRACE checks the delays in the input NCD file against your timing constraints. If
delays are exceeded, TRACE issues the appropriate timing error.

Command Line Tools User Guide
192 www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

Note You should limit timing constraint values to 2 ms (milliseconds). Timing
Constraint values more than 2 ms may result in bad values in the timing report.

Net Delay Constraints

When a MAXDELAY constraint is used, the delay for a constrained net is checked to
ensure that the route delay is less than or equal to the NETDELAY constraint (routedelay
<= netdelayconstraint).

routedelay - is the signal delay between the driver pin and the load pins on a net. This is
an estimated delay if the design is placed but not routed.

Any nets with delays that do not meet this condition generate timing errors in the
timing report.

Net Skew Constraints

When using USELOWSKEWLINES or MAXSKEW constraints, signal skew on a net
with multiple load pins is the difference between minimum and maximum load delays
(signalskew = (maxdelay- mindelay)).

* mindelay - is the maximum delay between the driver pin and a load pin.

* maxdelay - is the minimum delay between the driver pin and a load pin.

Note Register-to-register paths included in a MAXDELAY constraint report undergo
a hold violation (race condition) check only for paths whose start and endpoints are
registered on the same clock edge.

For constrained nets in the PCF, skew is checked to ensure that the SIGNALSKEW is less
than or equal to the MAXSKEW constraint (signalskew <= maxskewconstraint).

If the skew exceeds the maximum skew constraint, the timing report shows a skew error.

Path Delay Constraints

When a PERIOD constraint is used, the path delay equals the sum of logic (component)
delay, route (wire) delay, and setup time (if any), minus clock skew (if any) (pathdelay =
logicdelay + routedelay + setuptime - clockskew).

* logic delay - is the pin-to-pin delay through a component.

* route delay - is the signal delay between component pins in a path. This is an
estimated delay if the design is placed but not routed.

* setup time - is the time that data must be present on an input pin before the arrival
of the triggering edge of a clock signal (for clocked paths only).

* clock skew - is the difference between the amount of time the clock signal takes
to reach the destination register and the amount of time the clock signal takes
to reach the source register. Clock skew is discussed in the following section (for
register-to-register clocked paths only).

The delay for constrained paths is checked to ensure that the path delay is less than or
equal to the MAXPATHDELAY constraint (pathdelay <= maxpathdelayconstraint).

Paths showing delays that do not meet this condition generate timing errors in the
timing report.

Clock Skew and Setup Checking

Clock skew must be accounted for in register-to-register setup checks. For
register-to-register paths, the data delay must reach the destination register within a
single clock period. The timing analysis software ensures that any clock skew between
the source and destination registers is accounted for in this check.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 193

Chapter 13: TRACE

& XILINXe

Note By default, the clock skew of all non-dedicated clocks, local clocks, and dedicated
clocks is analyzed.

A setup check performed on register-to-register paths checks to make sure that Slack =
constraint + Tsk - (Tpath + Tsu)

* constraint - is the required time interval for the path, either specified explicitly by
you with a FROM TO constraint, or derived from a PERIOD constraint.

¢ Tpath - is the summation of component and connection delays along the path.
¢ Tsu (setup) - is the setup requirement for the destination register.

o Tsk (skew) - is the difference between the arrival time for the destination register
and the source register.

* TSlack - is the negative slack shows that a setup error may occur, because the data
from the source register does not set up at the target register for a subsequent clock
edge.

Clock Skew

The clock skew Tsk is the delay from the clock input (CLKIOB) to register D (TclkD) less
the delay from the clock input (CLKIOB) to register S (TclkS). Negative skew relative to
the destination reduces the amount of time available for the data path, while positive
skew relative to the destination register increases the amount of time available for the
data path.

Clock Passing Through Multiple Buffers

Because the total clock path delay determines the clock arrival times at the source
register (TclkS) and the destination register (TclkD), this check still applies if the source
and destination clocks originate at the same chip input but travel through different clock
buffers and routing resources, as shown below.

When the source and destination clocks originate at different chip inputs, no obvious
relationship between the two clock inputs exists for TRACE (because the software cannot
determine the clock arrival time or phase information).

Clocks Originating at Different Device Inputs

For FROM TO constraints, TRACE assumes you have taken into account the external
timing relationship between the chip inputs. TRACE assumes both clock inputs arrive
simultaneously. The difference between the destination clock arrival time (TclkD) and
the source clock arrival time (TclkS) does not account for any difference in the arrival
times at the two different clock inputs to the chip, as shown below.

The clock skew Tsk is not accounted for in setup checks covered by PERIOD constraints
where the clock paths to the source and destination registers originate at different
clock inputs.

Reporting with TRACE

The timing report produced by TRACE is a formatted ASCII (TWR) file prepared for

a particular design. It reports statistics on the design, a summary of timing warnings
and errors, and optional detailed net and path delay reports. The ASCII (TWR) reports
are formatted for viewing in a monospace (non-proportional) font. If the text editor
you use for viewing the reports uses a proportional font, the columns in the reports
do not line up correctly.

In addition to the TWR file, you can generate an XML timing report (TWX) file using the
-xml option. The contents of the XML timing report are identical to the ASCII (TWR)
timing report, although the XML report is not formatted and can only be viewed with
the Timing Analyzer GUI tool.

194

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

This section describes the following types of timing reports generated by TRACE.

* Summary Report - Lists summary information, design statistics, and statistics for
each constraint in the PCF.

* Error Report - Lists timing errors and associated net/path delay information.
* Verbose Report - Lists delay information for all nets and paths.

In each type of report, the header specifies the command line used to generate the report,
the type of report, the input design name, the optional input physical constraints file
name, speed file version, and device and speed data for the input NCD file. At the end
of each report is a timing summary, which includes the following information:

¢ The number of timing errors found in the design. This information appears in all
reports.

* A timing score, showing the total amount of error (in picoseconds) for all timing
constraints in the design.

¢ The number of paths and nets covered by the constraints.

¢ The number of route delays and the percentage of connections covered by timing
constraints.

Note The percentage of connections covered by timing constraints is given in a %
coverage statistic. The statistic does not show the percentage of paths covered; it shows
the percentage of connections covered. Even if you have entered constraints that cover
all paths in the design, this percentage may be less than 100%, because some connections
are never included for static timing analysis (for example, connections to the STARTUP
component).

In the following sections, a description of each report is accompanied by a sample.
The following is a list of additional information on timing reports:

¢ For all timing reports, if you specify a physical constraints file that contains invalid
data, a list of physical constraints file errors appears at the beginning of the report.
These include errors in constraint syntax.

* Ina timing report, a tilde (~) preceding a delay value shows that the delay value is
approximate. Values with the tilde cannot be calculated exactly because of excessive
delays, resistance, or capacitance on the net, that is, the path is too complex to
calculate accurately.

The tilde (~) also means that the path may exceed the numerical value listed next
to the tilde by as much as 20%. You can use the PENALIZE TILDE constraint

to penalize these delays by a specified percentage (see the Constraints Guide for a
description of the PENALIZE TILDE constraint).

"

* In atiming report, an “e” preceding a delay value shows that the delay value is
estimated because the path is not routed.

¢ TRACE detects when a path cycles (that is, when the path passes through a driving
output more than once), and reports the total number of cycles detected in the
design. When TRACE detects a cycle, it disables the cycle from being analyzed. If
the cycle itself is made up of many possible routes, each route is disabled for all
paths that converge through the cycle in question and the total number is included
in the reported cycle tally.

A path is considered to cycle outside of the influence of other paths in the design.
Thus, if a valid path follows a cycle from another path, but actually converges at an
input and not a driving output, the path is not disabled and contains the elements
of the cycle, which may be disabled on another path.

¢ Error counts reflect the number of path endpoints (register setup inputs, output
pads) that fail to meet timing constraints, not the number of paths that fail the
specification, as shown in the following figure.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 195

Chapter 13: TRACE

& XILINXe

Error reporting for failed timing constraints

1 path

e

If an error is generated at the endpoints of A and B, the timing report would lists one
error for each of the end points.

WESIC

Data Sheet Report

The Data Sheet report summarizes the external timing parameters for your design.
Only inputs, outputs and clocks that have constraints appear in the Data Sheet report
for verbose and error reports. Tables shown in the Data Sheet report depend on the
type of timing paths present in the design, as well as the applied timing constraints.
Unconstrained path analysis can be used with a constraints file to increase the coverage
of the report to include paths not explicitly specified in the constraints file. In the
absence of a physical constraints file (PCF), all I/O timing is analyzed and reported
(less the effects of any default path tracing controls). The Data Sheet report includes
the source and destination PAD names, and either the propagation delay between the
source and destination or the setup and hold requirements for the source relative to the
destination. TRACE now includes package flight times for certain packages.

There are four methods of running TRACE to obtain a complete Data Sheet report:
* Run with advanced analysis (-a)

* Run using default analysis (that is, with no constraints file and without advanced
analysis)

¢ Construct constraints to cover all paths in the design

* Run using the unconstrained path report for constraints that only partially cover
the design

Following are tables, including delay characteristics, that appear in the Data Sheet report:
* Input Setup and Hold Times

This table shows the setup and hold time for input signals with respect to an input
clock at a source pad. It does not take into account any phase introduced by the
DCM/DLL. If an input signal goes to two different destinations, the setup and hold
are worst case for that signal. It might be the setup time for one destination and
the hold time for another destination.

* Output Clock to Out Times

This table shows the clock-to-out signals with respect to an input clock at a source
pad. It does not take into account any phase introduced by the DCM/DLL. If an
output signal is a combinatorial result of different sources that are clocked by the
same clock, the clock-to-out is the worst-case path.

e (Clock Table

The clock table shows the relationship between different clocks. The Source Clock
column shows all of the input clocks. The second column shows the delay between
the rising edge of the source clock and the destination clock. The next column is
the data delay between the falling edge of the source and the rising edge of the
destination.

196

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

If there is one destination flip-flop for each source flip-flop the design is successful.
If a source goes to different flip-flops of unrelated clocks, one flip-flop might get the
data and another flip-flop might miss it because of different data delays.

You can quickly navigate to the Data Sheet report by clicking the corresponding
item in the Hierarchical Report Browser.

e External Setup and Hold Requirements

Timing accounts for clock phase relationships and DCM phase shifting for all
derivatives of a primary clock input, and report separate data sheet setup and hold
requirements for each primary input. Relative to all derivatives of a primary clock
input covered by a timing constraint.

The maximum setup and hold times of device data inputs are listed relative to each
clock input. When two or more paths from a data input exist relative to a device
clock input, the worst-case setup and hold times are reported. One worst-case
setup and hold time is reported for each data input and clock input combination
in the design.

Following is an example of an external setup/hold requirement in the data sheet
report:

Setup/Hold to clock ckl i
————————————— o e}
| Setup to | Hold to |
Source Pad lclk (edge) |Jclk (edge)]
+

————————————— S S
start_i [2.816(R)]0.000(R) |
————————————— S SRS

e User-Defined Phase Relationships

Timing reports separate setup and hold requirements for user-defined internal
clocks in the data sheet report. User-defined external clock relationships are not
reported separately.

¢ Clock-to-Clock Setup and Hold Requirements
Timing will not report separate setup and hold requirements for internal clocks.
* Guaranteed Setup and Hold

Guaranteed setup and hold requirements in the speed files will supersede any
calculated setup and hold requirements made from detailed timing analysis. Timing
will not include phase shifting, DCM duty cycle distortion, and jitter into guaranteed
setup and hold requirements.

* Synchronous Propagation Delays

Timing accounts for clock phase relationships and DCM phase shifting for

all primary outputs with a primary clock input source, and reports separate
clock-to-output and maximum propagation delay ranges for each primary output
covered by a timing constraint.

The maximum propagation delay from clock inputs to device data outputs are listed
for each clock input. When two or more paths from a clock input to a data output
exist, the worst-case propagation delay is reported. One worst-case propagation
delay is reported for each data output and clock input combination.

Following is an example of clock-to-output propagation delays in the data sheet
report:

Clock ckl1_ i to Pad
————————————————— o — — ———+
Iclk (edge)]|
Destination Pad | to PAD |
————————————————— o — — ———+
outl_o | 16.691(R)|

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 197

Chapter 13: TRACE £ XILINX:

——————————————— Fom e — ——+
Clock to Setup on destination clock ck2_i
------------- R S St 3
|Src/Dest |Src/Dest | Src/Dest| Src/Dest]
Source Clock |Rise/Rise|Fall/Rise|Rise/Fall|Fall/Fall]

------------- S St ST S &
ck2_i | 12.647 | I I I
ckl_i 110.241 | I I I
------------- St S T S &

The maximum propagation delay from each device input to each device output
is reported if a combinational path exists between the device input and output.
When two or more paths exist between a device input and output, the worst-case
propagation delay is reported. One worst-case propagation delay is reported for
every input and output combination in the design.

Following are examples of input-to-output propagation delays:

Pad to Pad

Source Pad |Destination Pad|Delay |
————————————— E S S, -
BSLOTO |DOS |37.534 |
BSLOT1 | D09 |37.876 |
BSLOT2 |D10 134.627 |
BSLOT3 |D11 137.214 |
CRESETN | VCASNO |51.846 |
CRESETN | VCASN1 |51.846 |
CRESETN | VCASN2 149.776 |
CRESETN | VCASN3 |52.408 |
CRESETN | VCASN4 152.314 |
CRESETN | VCASNS 152.314 |
CRESETN | VCASNG |51.357 |
CRESETN | VCASN7 152.527 |
_____________ g

¢ User-Defined Phase Relationships

Timing separates clock-to-output and maximum propagation delay ranges for
user-defined internal clocks in the data sheet report. User-defined external clock
relationships shall not be reported separately. They are broken out as separate
external clocks.

Report Legend

The following table lists descriptions of what X, R, and F mean in the data sheet report.

Note Applies to FPGA designs only.

X Indeterminate
R Rising Edge
F Falling Edge

Guaranteed Setup and Hold Reporting

Guaranteed setup and hold values obtained from speed files are used in the data sheet
reports for IOB input registers when these registers are clocked by specific clock routing
resources and when the guaranteed setup and hold times are available for a specified
device and speed.

Command Line Tools User Guide
198 www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

Specific clock routing resources are clock networks that originate at a clock IOB, use a
clock buffer to reach a clock routing resource and route directly to IOB registers.

Guaranteed setup and hold times are also used for reporting of input OFFSET
constraints.

The following figure and text describes the external setup and hold time relationships.

Guaranteed Setup and Hold

10B
DATAPAD
IFD
o
CLKIOB
CLKPAD CLKBUF

The pad CLKPAD of clock input component CLKIOB drives a global clock buffer
CLKBUEF, which in turn drives an input flip-flop IFD. The input flip-flop IFD clocks a
data input driven from DATAPAD within the component IOB.

Setup Times

The external setup time is defined as the setup time of DATAPAD within IOB relative to
CLKPAD within CLKIOB. When a guaranteed external setup time exists in the speed
files for a particular DATAPAD and the CLKPAD pair and configuration, this number is
used in timing reports. When no guaranteed external setup time exists in the speed files
for a particular DATAPAD and CLKPAD pair, the external setup time is reported as the
maximum path delay from DATAPAD to the IFD plus the maximum IFD setup time,
less the minimum of maximum path delay(s) from the CLKPAD to the IFD.

Hold Times

The external hold time is defined as the hold time of DATAPAD within IOB relative to
CLKPAD within CLKIOB. When a guaranteed external hold time exists in the speed
files for a particular DATAPAD and the CLKPAD pair and configuration, this number is
used in timing reports.

When no guaranteed external hold time exists in the speed files for a particular
DATAPAD and CLKPAD pair, the external hold time is reported as the maximum path
delay from CLKPAD to the IFD plus the maximum IFD hold time, less the minimum of
maximum path delay(s) from the DATAPAD to the IFD.

Summary Report

The summary report includes the name of the design file being analyzed, the device
speed and report level, followed by a statistical brief that includes the summary
information and design statistics. The report also list statistics for each constraint in the
PCEF, including the number of timing errors for each constraint.

A summary report is produced when you do not enter an -e (error report) or -v (verbose
report) option on the TRACE command line.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 199

Chapter 13: TRACE

& XILINXe

Two sample summary reports are shown below. The first sample shows the results
without having a physical constraints file. The second sample shows the results when a
physical constraints file is specified.

If no physical constraints file exists or if there are no timing constraints in the PCF,
TRACE performs default path and net enumeration to provide timing analysis statistics.
Default path enumeration includes all circuit paths to data and clock pins on sequential
components and all data pins on primary outputs. Default net enumeration includes all
nets.

Summary Report (Without a Physical Constraints File Specified)

The following sample summary report represents the output of this TRACE command.
trce -o summary.twr ramb16_sl1.ncd

The name of the report is summary.twr. No preference file is specified on the command
line, and the directory containing the file ram16_sl.ncd did not contain a PCF called
ramb16_s1.pcf.

Xilinx TRACE

Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.
Design file: rambl6_sl.ncd

Device,speed: xc2v250,-6

Report level: summary report

WARNING:Timing - No timing constraints found, doing default enumeration.
Asterisk (*) preceding a constraint indicates it was not met.

Constraint | Requested | Actual | Logic
| | | Levels

Default period analysis | | 2.840ns | 2

Default net enumeration | | 0.001ns |

All constraints were met.
Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock clk

——————————————— o+

| Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
——————————————— 4
ado | 0.263(R) | 0.555(R) |
adl | 0.263(R) | 0.555(R) |
ad10 | 0.263(R) | 0.555(R) |
adll | 0.263(R) | 0.555(R) |
ad12 | 0.263(R) | 0.555(R) |
adl3 | 0.263(R) | 0.555(R) |
——————————————— [T R YRS ——

200

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

Clock clk to Pad

——————————————— Fom e+
| clk (edge) |

Destination Pad | to PAD |

———————————————— S
do | 7.496(R) |
———————————————— N T §

Timing summary:

Timing errors: 0 Score: O
Constraints cover 20 paths, 21 nets, and 21 connections (100.0% coverage)

Design statistics:

Minimum period: 2.840ns (Maximum frequency: 352.113MHZz)
Maximum combinational path delay: 6.063ns

Maximum net delay: 0.001ns

Analysis completed Wed Mar 8 14:52:30 2000

Summary Report (With a Physical Constraints File Specified)

The following sample summary report represents the output of this TRACE command:
trce -0 summaryl.twr rambl6_sl.ncd clkperiod.pcf

The name of the report is summary1l.twr. The timing analysis represented in the file
were performed by referring to the constraints in the file clkperiod.pcf.

Xilinx TRACE
Copyright (c¢) 1995-2007 Xilinx, Inc. All rights reserved.

Design file: rambl6_sl1.ncd

Physical constraint file: clkperiod.pcf
Device,speed: xc2v250,-6

Report level: summary report

Constraint | Requested | Actual | Logic
| | | Levels

TSO01 = PERIOD TIMEGRP "clk™ 10.0ns | | |
OFFSET = IN 3.0 ns AFTER COMP

"clk™ TIMEG | 3.000ns | 8.593ns | 2
RP "‘rams™

* TS02 = MAXDELAY FROM TIMEGRP

"rams" TO TI | 6.000ns | 6.063ns |2
MEGRP "pads'" 6.0 ns | | |

1 constraint not met.

Data Sheet report:

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 201

Chapter 13: TRACE

& XILINXe

All values displayed in nanoseconds (ns)

Setup/Hold to clock clk

——————————————— o+

| Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
——————————————— 4
ado | 0.263(R) | 0.555(R) |
adl | 0.263(R) | 0.555(R) |
ad10 | 0.263(R) | 0.555(R) |
adll | 0.263(R) | 0.555(R) |
adl2 | 0.263(R) | 0.555(R) |
adl3 | 0.263(R) | 0.555(R) |
——————————————— o
Clock clk to Pad
———————————————— Fom e+

| clk (edge) |

Destination Pad | to PAD |
———————————————— Fom e+
do | 7.496(R)|
--------------- Fom e+

Timing summary:

Timing errors: 1 Score: 63
Constraints cover 19 paths, 0 nets, and 21 connections (100.0% coverage)

Design statistics:
Maximum path delay from/to any node: 6.063ns
Maximum input arrival time after clock: 8.593ns

Analysis completed Wed Mar 8 14:54:31 2006

When the physical constraints file includes timing constraints, the summary report lists
the percentage of all design connections covered by timing constraints. If there are no
timing constraints, the report shows 100% coverage. An asterisk (*) precedes constraints
that fail.

Error Report

The error report lists timing errors and associated net and path delay information. Errors
are ordered by constraint in the PCF and within constraints, by slack (the difference
between the constraint and the analyzed value, with a negative slack showing an error
condition). The maximum number of errors listed for each constraint is set by the limit
you enter on the command line. The error report also contains a list of all time groups
defined in the PCF and all of the members defined within each group.

The main body of the error report lists all timing constraints as they appear in the input
PCEF. If the constraint is met, the report states the number of items scored by TRACE,
reports no timing errors detected, and issues a brief report line, showing important
information (for example, the maximum delay for the particular constraint). If the
constraint is not met, it gives the number of items scored by TRACE, the number of
errors encountered, and a detailed breakdown of the error.

202

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

For errors in which the path delays are broken down into individual net and component
delays, the report lists each physical resource and the logical resource from which the
physical resource was generated.

As in the other three types of reports, descriptive material appears at the top. A timing
summary always appears at the end of the reports.

The following sample error report (error.twr) represents the output generated with
this TRACE command:

trce -e 3 rambl6_sl.ncd clkperiod.pcf -0 error_report.twr

Xilinx TRACE
Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

trce -e 3 rambl6_sl.ncd clkperiod.pcf -0 error_report.twr

Design file: rambl16_sl.ncd

Physical constraint file: clkperiod.pcf
Device,speed: xc2v250,-5 (ADVANCED 1.84 2001-05-09)
Report level: error report

Timing constraint: TSO1 = PERIOD TIMEGRP "clk" 10.333ns ;

0 items analyzed, O timing errors detected.

Timing constraint: OFFSET = IN 3.0 ns AFTER COMP "clk" TIMEGRP "‘rams"™ ;

18 items analyzed, O timing errors detected.
Maximum allowable offset is 9.224ns.

Timing constraint: TS02 = MAXDELAY FROM TIMEGRP "rams' TO TIMEGRP 'pads'™ 8.0 nS ;

1 item analyzed, 1 timing error detected.
Maximum delay is 8.587ns.

Slack: -0.587ns (requirement - data path)
Source: RAMB16.A

Destination: dO

Requirement: 8.000ns

Data Path Delay: 8.587ns (Levels of Logic = 2)
Source Clock: CLK rising at 0.000ns

Data Path: RAMB16.A to dO
Location Delay type Delay(ns) Physical Resource
Logical Resource(s)

RAMB16.DOAO Tbcko 3.006 RAMB16
RAMB16 . A
10B.01 net e 0.100 N$41
(fanout=1)
10B.PAD Tioop 5.481 do

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 203

Chapter 13: TRACE

& XILINXe

1$22

do
Total 8.587ns (8.487ns logic, 0.100ns
..................................... route)
.................................... (98.8% logic, 1.2%
..................................... route)

1 constraint not met.
Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock clk

——————————————— T T TR
| Setup to | Hold to |

Source Pad | clk (edge) | clk (edge) |

——————————————— T T TR

ado | -0.013(R)|] 0.325(R)|

adl | -0.013(R)| 0.325(R)|

ad10 | -0.013(R)| 0.325(R)|

adll | -0.013(R)|] 0.325(R)|

adi2 | -0.013(R)| 0.325(R)|

ad13 | -0.013(R)| 0.325(R)|

——————————————— o

Clock clk to Pad

——————————————— Fom e+

| clk (edge) |
Destination Pad] to PAD |
——————————————— Fom e+
do | 9.563(R) |
--------------- Fom e+

Timing summary:

Timing errors: 1 Score: 587

Constraints cover 19 paths, 0 nets, and 21 connections (100.0% coverage)
Design statistics:

Maximum path delay from/to any node: 8.587ns

Maximum input arrival time after clock: 9.224ns

Analysis completed Mon Jun 03 17:47:21 2007

Command Line Tools User Guide

204 www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

Verbose Report

The verbose report is similar to the error report and provides details on delays for all
constrained paths and nets in the design. Entries are ordered by constraint in the
PCF, which may differ from the UCF or NCF and, within constraints, by slack, with a
negative slack showing an error condition. The maximum number of items listed for
each constraint is set by the limit you enter on the command line.

Note The data sheet report and STAMP model display skew values on non-dedicated
clock resources that do not display in the default period analysis of the normal verbose
report. The data sheet report and STAMP model must include skew because skew
affects the external timing model.

The verbose report also contains a list of all time groups defined in the PCF, and all of
the members defined within each group.

The body of the verbose report enumerates each constraint as it appears in the input
physical constraints file, the number of items scored by TRACE for that constraint, and
the number of errors detected for the constraint. Each item is described, ordered by
descending slack. A Report line for each item provides important information, such as
the amount of delay on a net, fanout on each net, location if the logic has been placed,
and by how much the constraint is met.

For path constraints, if there is an error, the report shows the amount by which the
constraint is exceeded. For errors in which the path delays are broken down into
individual net and component delays, the report lists each physical resource and the
logical resource from which the physical resource was generated.

Verbose Report Example

The following sample verbose report (verbose.twr) represents the output generated with
this TRACE command:

trce —v 1 ramb16_sl.ncd clkperiod.pcf —o verbose_report.twr

Xilinx TRACE
Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

trce -v 1 rambl16_sl.ncd clkperiod.pcf -0 verbose_report.twr

Design file: ramb1l6_s1.ncd

Physical constraint file: clkperiod.pcf

Device,speed: xc2v250,-5 (ADVANCED 1.84 2001-05-09)
Report level: verbose report, limited to 1 item per constraint

ng constraint: TSO1 = PERIOD TIMEGRP "clk™ 10.333ns ;
ems analyzed, O timing errors detected.

-, -

Timing constraint: OFFSET = IN 3.0 ns AFTER COMP "clk'™ TIMEGRP "‘rams™ ;
18 items analyzed, O timing errors detected.
Maximum allowable offset is 9.224ns.

Slack: 6.224ns (requirement - (data path - clock path
- clock arrival))

Source: Ssr

Destination: RAMB16 . A

Destination Clock: CLK rising at 0.000ns

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 205

Chapter 13: TRACE £ XILINX:

Requirement: 7.333ns
Data Path Delay: 2.085ns (Levels of Logic = 2)
Clock Path Delay: 0.976ns (Levels of Logic = 2)

Data Path: ssr to RAMB16.A
Location Delay type Delay(ns)
Physical Resource
Logical Resource(s)

10B.1 Tiopi
0.551 Ssr
SSr
1$36
RAM16.SSRA net e 0.100 N$9
(fanout=1)
RAM16 .CLKA Tbrck 1.434 RAMB16
RAMB16 . A
Total 2.085ns (1.985ns logic, 0.100ns
route)
(95.2% logic, 4.8%
route)

Clock Path: clk to RAMB16.A
Location Delay type Delay(ns) Physical Resource
Logical Resource(s)

10B.1 Tiopi 0.551 clk
clk
clk/new_buffer
BUFGMUX. 10 net e 0.100 clk/new_buffer
(fanout=1)
BUFGMUX .0 TgiOo 0.225 1$9
1$9
RAM16 .CLKA net e 0.100 CLK
(fanout=1)
Total 0.976ns (0.776ns logic, 0.200ns
route)
(79.5% logic, 20.5%
route)
Timing constraint: TS02 = MAXDELAY FROM TIMEGRP "rams' TO TIMEGRP ''pads"
8.0 nS ;

1 item analyzed, 1 timing error detected.
Maximum delay is 8.587ns.
Slack: -0.587ns (requirement - data path)
Source: RAMB16.A
Destination: dO
Requirement: 8.000ns
Data Path Delay: 8.587ns (Levels of Logic = 2)
Source Clock: CLK rising at 0.000ns
Data Path: RAMB16.A to dO
Location Delay type Delay(ns) Physical Resource
Logical Resource(s)

Command Line Tools User Guide
206 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 13: TRACE

RAMB16 .DOAO Tbhcko 3.006 RAMB16
RAMB16.A

10B.01 net (fFanout=1) e 0.100 N$41

10B.PAD Tioop 5.481 do
1$22
do

Total 8.587ns (8.487ns logic,

0.100ns route)
(98.8% logic, 1.2% route)

1 constraint not met.

Data Sheet report:

All values displayed in nanoseconds (ns)
Setup/Hold to clock clk

——————————————— o
| Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
——————————————— Fo
ado | -0.013(R) | 0.325(R) |
adl | -0.013(R) | 0.325(R) |
ad10 | -0.013(R) | 0.325(R) |
adll | -0.013(R) | 0.325(R) |
——————————————— o
Clock clk to Pad
——————————————— o+
| clk (edge) |
Destination Pad] to PAD |
——————————————— o+
do | 9.563(R) |
——————————————— [T ——

Timing summary:

Timing errors: 1 Score: 587

Constraints cover 19 paths, 0

Design statistics:
Maximum path delay from/to
Maximum input arrival time

Analysis completed Mon Jun 03

nets, and 21 connections (100.0% coverage)

any node: 8.587ns
after clock: 9.224ns

17:57:24 2007

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

www.Xilinx.com 207

Chapter 13: TRACE £ XILINX:

OFFSET Constraints

OFFSET constraints define Input and Output timing constraints with respect to an
initial time of Ons.

The associated PERIOD constraint defines the initial clock edge. If the PERIOD
constraint is defined with the attribute HIGH, the initial clock edge is the rising clock
edge. If the attribute is LOW, the initial clock edge is the falling clock edge. This can
be changed by using the HIGH/LOW keyword in the OFFSET constraint. The OFFSET
constraint checks the setup time and hold time. For more information on constraints,
see the Constraints Guide.

OFFSET IN Constraint Examples

This section describes in detail a specific example of an OFFSET IN constraint as shown
in the Timing Constraints section of a timing analysis report. For clarification, the
OFFSET IN constraint information is divided into the following parts:

e OFFSET IN Header

e OFFSET IN Path Details

e OFFSET IN Detailed Path Data

e OFFSET IN Detail Path Clock Path
e OFFSET IN with Phase Clock

OFFSET IN Header

The header includes the constraint, the number of items analyzed, and number of timing
errors detected. Please see PERIOD Header for more information on items analyzed
and timing errors.

Timing constraint: OFFSET = IN 4 nS BEFORE COMP "‘wclk_in"
113 items analyzed, 30 timing errors detected.
Minimum allowable offset is 4.468ns

The minimum allowable offset is 4.468 ns. Because this is an OFFSET IN BEFORE, it
means the data must be valid 4.468 ns before the initial edge of the clock. The PERIOD
constraint was defined with the keyword HIGH, therefore the initial edge of the clock
is the rising edge.

Command Line Tools User Guide
208 www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

OFFSET IN Path Details

This path fails the constraint by 0.468 ns. The slack equation shows how the slack was
calculated. In respect to the slack equation data delay increases the setup time while
clock delay decreases the setup time. The clock arrival time is also taken into account. In
this example, the clock arrival time is 0.000 ns; therefore, it does not affect the slack.

Slack: -0.468ns (requirement - (data path - clock path - clock arrival + uncertainty))

Source: wr_enl (PAD)

Destination: wr_addr[2] (FF)

Destination Clock: wclk rising at 0.000ns
Requirement: 4.000ns

Data Path Delay: 3.983ns (Levels of Logic = 2)
Clock Path Delay: -0.485ns (Levels of Logic = 3)
Clock Uncertainty: 0.000ns

Data Path: wr_enl to wr_addr[2]

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 209

Chapter 13: TRACE £ XILINX:

OFFSET IN Detailed Path Data

The first section is the data path. In the following case, the path starts at an IOB, goes
through a look-up table (LUT) and is the clock enable pin of the destination flip-flop.

Data Path: wr_enl to wr_addr[2]

Location Delay type Delay(ns) Logical Resource(s)

Cc4.1 Tiopi 0.825 wr_enl

wr_enl_ibuf

SLICE_X2Y9.G3 net (fanout=39) 1.887 wr_enl_c
SLICE_X2Y9.Y Tilo 0.439 G_82

SLICE_X3Y11.CE net (fanout=1) 0.592 G_82
SLICE_X3Y11.CLK Tceck 0.240 wr_addr[2]

Total 3.983ns (1.504ns logic, 2.479ns route)

37.8% logic, 62.2% route)

OFFSET IN Detail Path Clock Path

The second section is the clock path. In this example the clock starts at an IOB, goes to
a DCM, comes out CLKO of the DCM through a global buffer (BUFGHUX). It ends at
a clock pin of a FF.

Command Line Tools User Guide
210 www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

Tdcmino is a calculated delay.

Clock Path: wclk_in to wr_addr[2]

Location Delay type Delay(ns) Logical Resource(s)

D7.1 Tiopi 0.825 welk_in

write_dcm/I1BUFG

DCM_XOY1.CLKIN net (fanout=1) 0.798 write_dcm/I1BUFG
DCM_XO0Y1.CLKO Tdcmino -4.297 write_dcm/CLKDLL
BUFGMUX3P. 10 net (fanout=1) 0.852 write_dcm/CLKO
BUFGMUX3P .0 TgiO0o 0.589 write_dcm/BUFG
SLICE_X3Y11.CLK net (fanout=41) 0.748 weclk

OFFSET In with Phase Shifted Clock

In the following example, the clock is the CLK90 output of the DCM. The clock arrival
time is 2.5 ns. The rclk_90 rising at 2.500 ns. This number is calculated from the PERIOD
on rclk_in which is 10ns in this example. The 2.5 ns affects the slack. Because the clock is
delayed by 2.5 ns, the data has 2.5 ns longer to get to the destination.

If this path used the falling edge of the clock, the destination clock would say, falling at
00 ns 7.500 ns (2.5 for the phase and 5.0 for the clock edge). The minimum allowable
offset can be negative because it is relative to the initial edge of the clock. A negative
minimum allowable offset means the data can arrive after the initial edge of the clock.
This often occurs when the destination clock is falling while the initial edge is defined as
rising. This can also occur on clocks with phase shifting.

Timing constraint: OFFSET = IN 4 nS BEFORE COMP "‘rclk_in" ;
2 items analyzed, O timing errors detected.

Minimum allowable offset is 1.316ns.

Slack: 2.684ns (requirement - (data path - clock path - clock arrival + uncertainty))
Source: wclk_in (PAD)
Destination: fl_reg (FF)

Destination Clock: rclk 90 rising at 2.500ns

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 211

Chapter 13: TRACE

& XILINXe

Requirement:

Data Path Delay:

Clock Path Delay: -0.633ns (Levels of Logic

4.000ns

3.183ns (Levels of Logic =

Clock Uncertainty: 0.000ns

Data Path: wclk_in to ffl_reg
Location Delay type Delay(ns)
D7.1 Tiopi 0.825
DCM_XOY1.CLKIN net (fanout=1) 0.798
DCM_X0Y1.CLKO Tdcmino -4.297
BUFGMUX3P. 10 net (fanout=1) 0.852
BUFGMUX3P .0 TgiOo 0.589

SLICE_X2Y11.G3

net (fanout=41) 1.884

SLICE_X2Y11.Y Tilo 0.439
SLICE_X2Y11.F3 net (fanout=1) 0.035
SLICE_X2Y11.X Tilo 0.439
K4.01 net (fanout=3) 1.230
K4 .0TCLK1 Tioock 0.389

Total 3.183ns (-1.616ns logic, 4.799ns route)

Clock Path: rclk_in to ffl_reg

Location

Delay type Delay(ns)

Logical Resource(s)
wclk_in
write_dcm/I1BUFG
write_dcm/IBUFG
write_dcm/CLKDLL
write_dcm/CLKO
write_dcm/BUFG
welk

unl_full_st
unl_full_st
full_st_i 0.6.4.G6_4.G 4

G_4

Logical Resource(s)

rclk_in

read_ibufg

CM_X1Y1.CLKIN net (fanout=1) 0.798
CM_X1Y1.CLK90 Tdcmino -4.290
UFGMUX5P . 10 net (fanout=1) 0.852
BUFGMUX5P .0 TgiOo 0.589

rclk_ibufg
read_dcm
rclk_90_dcm

read90_bufg

212

www.Xilinx.com

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

4 _0TCLK1 net (fanout=2) 0.593 rclk_90

Total -0.633ns (-2.876ns logic, 2.243ns route)

OFFSET OUT Constraint Examples

This section describes specific examples of an OFFSET OUT constraint, as shown in
the Timing Constraints section of a timing report. For clarification, the OFFSET OUT
constraint information is divided into the following parts:

e OFFSET OUT Header

e OFFSET OUT Path Details

e OFFSET OUT Detail Clock Path
e OFFSET OUT Detail Path Data

OFFSET OUT Header

The header includes the constraint, the number of items analyzed, and number of timing
errors detected. See the PERIOD Header for more information on items analyzed and
timing errors.

Timing constraint: OFFSET = OUT 10 nS AFTER COMP “‘rclk_in"
50 items analyzed, O timing errors detected.

Minimum allowable offset is 9.835ns.

OFFSET OUT Path Details

The example path below passed the timing constraint by .533 ns. The slack equation
shows how the slack was calculated. Data delay increases the clock to out time and
clock delay also increases the clock to out time. The clock arrival time is also taken into
account. In this example the clock arrival time is 0.000 ns; therefore, it does not affect
the slack.

If the clock edge occurs at a different time, this value is also added to the clock to out
time. If this example had the clock falling at 5.000 ns, 5.000 ns would be added to the
slack equation because the initial edge of the corresponding PERIOD constraint is HIGH.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 213

Chapter 13: TRACE £ XILINX:

Note The clock falling at 5.000 ns is determined by how the PERIOD constraint is
defined, for example PERIOD 10 HIGH 5.

Slack: 0.533ns (requirement - (clock arrival + clock
path + data path + uncertainty))

Source: wr_addr[2] (FF)

Destination: efl (PAD)

Source Clock: wclk rising at 0.000ns
Requirement: 10.000ns

Data Path Delay: 9.952ns (Levels of Logic = 4)
Clock Path Delay: -0.485ns (Levels of Logic = 3)
Clock Uncertainty: 0.000ns

OFFSET OUT Detail Clock Path

In the following example, because the OFFSET OUT path starts with the clock, the clock
path is shown first. The clock starts at an IOB, goes to a DCM, comes out CLKO of the
DCM through a global buffer. It ends at a clock pin of a FF.

The Tdcmino is a calculated delay.

Clock Path: rclk_in to rd_addr[2]

Location Delay type Delay(ns) Logical Resource(s)

A8.1 Tiopi 0.825 rclk_in

read_ibufg
DCM_X1Y1.CLKIN net (fanout=1) 0.798 rclk_ibufg
DCM_X1Y1.CLKO Tdcmino -4.290 read_dcm
BUFGMUX7P_ 10 net (fanout=1) 0.852 rclk_dcm
BUFGMUX7P .0 TgiOo 0.589 read_bufg
SLICE_X4Y10.CLK net (fanout=4) 0.738 rclk

Total -0.488ns (-2.876ns logic, 2.388ns route)

Command Line Tools User Guide
214 www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

OFFSET OUT Detail Path Data

The second section is the data path. In this case, the path starts at an FF, goes through
three look-up tables and ends at the IOB.

Data Path: rd_addr[2] to efl

Location Delay type Delay(ns) Logical Resource(s)
SLICE_X4Y10.YQ Tcko 0.568 rd_addr[2]
SLICE_X2Y10.F4 net (fanout=40) 0.681 rd_addr[2]
SLICE_X2Y10.X Tilo 0.439 G_59
SLICE_X2Y10.G1 net (fanout=1) 0.286 G_59
SLICE_X2Y10.Y Tilo 0.439 N_44_ i
SLICE_XOYO.F2 net (fanout=3) 1.348 N_44 i
SLICE_XO0YO0.X Tilo 0.439 empty_st i_0
M4.01 net (fanout=2) 0.474 empty_st i_0
M4 _PAD Tioop 5.649 efl_obuf

efl
Total 10.323ns (7-534ns logic, 2.789ns route)

(73.0% logic, 27.0% route)

PERIOD Constraints

A PERIOD constraint identifies all paths between all sequential elements controlled by
the given clock signal name. For more information on constraints, see the Constraints
Guide.

This section provides examples and details of the PERIOD constraints shown in the
Timing Constraints section of a timing analysis report. For clarification, PERIOD
constraint information is divided into the following parts:

e PERIOD Header

e PERIOD Path

e PERIOD Path Details

e PERIOD Constraint with PHASE

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 215

Chapter 13: TRACE £ XILINX:

PERIOD Header

The following example is of a constraint generated using NGDBuild during the translate
step in the design flow. A new timespec (constraint) name was created. In this example
itis TS_write_dcm_CLKO. Write_dcm is the instantiated name of the DCM. CLKO is the
output clock. The timegroup created for the PERIOD constraint is write_dem_CLKO.
The constraint is related to TS_wclk. In this example, the PERIOD constraint is the
same as the original constraint because the original constraint is multiplied by 1 and
there is not a phase offset. Because TS_wclk is defined to have a Period of 12 ns, this
constraint has a Period of 12 ns.

In this constraint, 296 items are analyzed. An item is a path or a net. Because this
constraint deals with paths, an item refers to a unique path. If the design has unique
paths to the same endpoints, this is counted as two paths. If this constraint were a
MAXDELAY or a net-based constraint, items refer to nets. The number of timing errors
refers to the number of endpoints that do not meet the timing requirement, and the
number of endpoints with hold violations. If the number of hold violations is not shown,
there are no hold violations for this constraint. If there are two or more paths to the same
endpoint, it is considered one timing error. If this is the situation, the report shows two
or more detailed paths; one for each path to the same endpoint.

The next line reports the minimum Period for this constraint, which is how fast this
clock runs.

Timing constraint: TS write_dcm CLKO = PERIOD TIMEGRP "write_dcm_CLKO"™ TS wclk *
1.000000 HIGH

50.000 % ;

296 items analyzed, O timing errors detected.

Minimum period is 3.825ns.

PERIOD Path

The detail path section shows all of the details for each path in the analyzed timing
constraint. The most important thing it does is identify if the path meets the timing
requirement. This information appears on the first line and is defined as the Slack. If the
slack number is positive, the path meets timing constraint by the slack amount. If the
slack number is negative, the path fails the timing constraint by the slack amount. Next
to the slack number is the equation used for calculating the slack. The requirement is the
time constraint number. In this case, it is 12 ns Because that is the time for the original
timespec TS_wclk. The data path delay is 3.811 ns and the clock skew is negative 0.014
ns. (12 - (3.811 - 0.014) = 8.203). The detail paths are sorted by slack. The path with the
least amount of slack is the first path shown in the Timing Constraints section.

The Source is the starting point of the path. Following the source name is the type of
component. In this case the component is a flip-flop (FF). The FF group also contains the
SRL16. Other components are RAM (Distributed RAM vs. BlockRAM), PAD, LATCH,
HSIO (High Speed I/O such as the Gigabit Transceivers) MULT (Multipliers), CPU
(PowerPC® processor), and others. In Timing Analyzer, for FPGA designs the Source

is a hot-link for cross probing.

The Destination is the ending point of the path. See the above description of the Source
for more information about Destination component types and cross probing.

The Requirement is a calculated number based on the time constraint and the time of
the clock edges. The source and destination clock of this path are the same so the entire
requirement is used. If the source or destination clock was a related clock, the new
requirement would be the time difference between the clock edges. If the source and
destination clocks are the same clock but different edges, the new requirement would be
half the original period constraint.

Command Line Tools User Guide
216 www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

The Data Path Delay is the delay of the data path from the source to the destination.
The levels of logic are the number of LUTS that carry logic between the source and
destination. It does not include the clock-to-out or the setup at the destination. If there
was a LUT in the same slice of the destination, that counts as a level of logic. For this
path, there is no logic between the source and destination therefore the level of logic is 0.

The Clock Skew is the difference between the time a clock signal arrives at the source
flip-flop in a path and the time it arrives at the destination flip-flop. If Clock Skew is not
checked it will not be reported.

The Source Clock or the Destination Clock report the clock name at the source or
destination point. It also includes if the clock edge is the rising or falling edge and
the time that the edge occurs. If clock phase is introduced by the DCM/DLL, it would
show up in the arrival time of the clock. This includes coarse phase (CLK90, CLK180,
or CLK270) and fine phase introduced by Fixed Phase Shift or the initial phase of
Variable Phase Shift

The Clock Uncertainty for an OFFSET constraint might be different than the clock
uncertainty on a PERIOD constraint for the same clock. The OFFSET constraint only
looks at one clock edge in the equation but the PERIOD constraints takes into account
the uncertainty on the clock at the source registers and the uncertainty on the clock at
the destination register therefore there are two clock edges in the equation.

Slack: 8.175ns (requirement - (data path - clock skew + uncertainty))
Source: wr_addr[0] (FF)

Destination: fifo_ram/BU5/SP (RAM)

Requirement: 12.000ns

Data Path Delay: 3.811ns (Levels of Logic = 1)

clock skew: -0.014ns

Source Clock: wclk rising at 0.000ns

Destination Clock: wclk rising at 12.000ns

Clock Uncertainty: 0.000ns

PERIOD Path Details

The first line is a link to the Constraint Improvement Wizard (CIW). The CIW gives
suggestions for resolving timing constraint issues if it is a failing path. The data path
section shows all the delays for each component and net in the path. The first column is
the Location of the component in the FPGA. It is turned off by default in TWX reports.
The next column is the Delay Type. If it is a net, the fanout is shown. The Delay names
correspond with the datasheet. For an explanation of the delay names, click on a delay
name for a description page to appear.

The next columns are the Physical Resource and Logical Resource names. The Physical
name is the name of the component after mapping. This name is generated by the Map
process. It is turned off by default in TWX reports. The logical name is the name in the
design file. This is typically created by the synthesis tool or schematic capture program.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 217

Chapter 13: TRACE

& XILINXe

At the end of the path is the total amount of the delay followed by a breakdown of
logic vs. routing. This is useful information for debugging a timing failure. For more
information see Timing Improvement Wizard for suggestions on how to fix a timing
issues.

Constraints Improvement Wizard

Data Path: wr_addr[0] to fifo_ram/BU5/SP

Location Delay type Delay(ns) Logical Resource(s)
SLICE_X2Y4.YQ Tcko 0.568 wr_addr[0]
SLICE_X6Y8.WF1 net (fanout=112) 2.721 wr_addr[0]
SLICE_X6Y8.CLK Tas 0.522 fifo_ram/BU5/SP

Total 3.811ns (1.090ns logic, 2.721ns route)
(28.6% logic, 71.4% route)

PERIOD Constraint with PHASE

This is a PERIOD constraint for a clock with Phase. It is a constraint created by the
Translate (NGDBuild) step. It is related back to the TS_rclk constraint with a PHASE of
2.5 ns added. The clock is the CLK90 output of the DCM. Since the PERIOD constraint
is 10 ns the clock phase from the CLK90 output is 2.5 ns, one-fourth of the original
constraint. This is defined using the PHASE keyword.

Timing constraint: TS _rclk 90 dcm = PERIOD TIMEGRP "rclk_90_dcm™
TS_rclk * 1.000000 PHASE + 2.500

nS HIGH 50.000 % ;

6 items analyzed, 1 timing error detected.

Minimum period is 21.484ns.

PERIOD Path with Phase

This is similar to the PERIOD constraint (without PHASE). The difference for this
path is the source and destination clock. The destination clock defines which PERIOD
constraint the path uses. Because the destination clock is the rclk_90, this path is in the
TS_rclk90_dcm PERIOD and not the TS_rclk PERIOD constraint.

Notice the Requirement is now 2.5 ns and not 10 ns. This is the amount of time between
the source clock (rising at Ons) and the destination clock (rising at 2.5 ns).

218

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

£ XILINXe Chapter 13: TRACE

Because the slack is negative, this path fails the constraint. In the Hierarchical Report
Browser, this failing path is displayed in red.

Slack: -2.871ns (requirement - (data path - clock skew + uncertainty))
Source: rd_addr[1] (FF)

Destination: ffl_reg (FF)

Requirement: 2.500ns

Data Path Delay: 5.224ns (Levels of Logic = 2)
Clock Skew: -0.147ns

Source Clock: rclk rising at 0.000ns

Destination Clock: rclk_90 rising at 2.500ns

Clock Uncertainty: 0.000ns

Data Path: rd_addr[1] to ffl_reg

Location Delay type Delay(ns) Logical Resource(s)
SLICE_X4Y19.XQ Tcko 0.568 rd_addr[1]

SLICE_X2Y9.F3 net (fanout=40) 1.700 rd_addr[1]
SLICE_X2Y9.X Tilo 0.439 full_st_i_0.6_4.G_4.6_3 10
SLICE_X2Y11.F2 net (fanout=1) 0.459 G_3 10
SLICE_X2Y11.X Tilo 0.439 full_st_i_0.G_4.G_4.G_4
K4.01 net (fanout=3) 1.230 G_4

K4.0TCLK1 Tioock 0.389 ffl_reg

Total 5.224ns (1.835ns logic, 3.389ns route)

(35.1% logic, 64.9% route)

Minimum Period Statistics

The Timing takes into account paths that are in a FROM:TO constraints but the minimum
period value does not account for the extra time allowed by multi-cycle constraints.

An example of how the Minimum Period Statistics are calculated. This number is
calculated assuming all paths are single cycle.

Design statistics:

Minimum period: 30.008ns (Maximum frequency: 33.324MHZz)
Maximum combinational path delay: 42.187ns

Maximum path delay from/to any node: 31.026ns

Minimum input arrival time before clock: 12.680ns
Maximum output required time before clock: 43.970ns

Halting TRACE

To halt TRACE, press Ctrl-C (on Linux) or Ctrl-BREAK (on Windows). On Linux,
make sure the active window is the window from which you invoked TRACE. The
program prompts you to confirm the interrupt. Some files may be left when TRACE is
halted (for example, a TRACE report file or a physical constraints file), but these files
may be discarded because they represent an incomplete operation.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 219

Command Line Tools User Guide
220 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 14

Speedprint

This chapter describes Speedprint. This chapter contains the following sections:
* Speedprint Overview

* Speedprint Command Line Syntax

* Speedprint Command Line Options

Speedprint Overview

Speedprint is a Xilinx® command line tool that provides general information about

block delay values. To view precise values for a particular path through a block, see a
trace report showing that path.

Speedprint Flow

Input Command
Options

[SPEEDPRINT

Block Delay
Report

Speedprint Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6
e Virtex®-4, Virtex-5, and Virtex-6

Speedprint File Types

There are no Speedprint file types. The report output is written to standard output (std
out). To save Speedprint output, redirect the output as shown in below.

speedprint 5vIx30 > reportl.txt

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 221

Chapter 14: Speedprint & XILINX:

Speedprint Example Report One: speedprint 5vIx30

This report is for a normal device with no special options. This report is for worst case
temperature and voltage in the default speed grade.

Family virtex5, Device xc5vIx30

Block delay report for device: 5vIx30, speed grade: -3, Stepping Level: O
Version identification for speed file is: PRODUCTION 1.58 a 2007-10-05
Speed grades available for this device: -MIN -3 -2 -1

This report prepared for speed grade of -3 using a junction
temperature of 85.000000 degrees C and a supply voltage of 0.950000 volts.

Operating condition ranges for this device:
Voltage 0.950000 to 1.050000 volts
Temperature 0.000000 to 85.000000 degrees Celsius

This speed grade does not support reporting delays for specific
voltage and temperature conditions.

Default System Jitter for this device is 50.00 picoseconds.
Setup/Hold Calculation Support
Delay Adjustment Factors:

Note: This speed file does not contain any delay adjustment factors.
The following list of packages have individual package flight times for each pin on the device:

324
676

No external setup and hold delays

This report is intended to present the effect of different speed
grades and voltage/temperature adjustments on block delays.
For specific situations use the Timing Analyzer report instead.

Delays are reported in picoseconds.

When a block is placed in a site normally used for another type of block,
for example, an 10B placed in a Clock I0B site, small variations in delay
may occur which are not included in this report.

NOTE: The delay name is followed by a pair of values representing a relative minimum
delay value and its corresponding maximum value. If a range of values exists for
a delay name, then the smallest pair and the largest pair are reported.

BUFG
Tbhgcko_0O 173.00 / 188.00

BUFGCTRL

Tbceck _CE 265.00 / 265.00
Tbceck S 265.00 / 265.00
Tbccke_CE 0.00 /7 0.00
Tbccke_S 0.00 /7 0.00
Thccko_0 173.00 / 188.00

BUFI0
Tbufiocko_0 594.00 / 1080.00

Command Line Tools User Guide
222 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 14: Speedprint

Speedprint Example Report Two: speedprint -help

This report is Help output showing the various options.

Usage: speedprint [-s <sgrade>] [-t <temp>] [-v <volt>] [-stepping <level>] [-intstyle <style>] <device>
You must specify a device whose delays you want to see.

For example, speedprint 2v250e.

Options and arguments are:

-s <sgrade> Desired speed grade. Default is used if not specified.

Use -s min for the absolute minimum delay values.

-t <temp> Junction temperature of device. Default is worst case.

-v <volts> Supply voltage. Default is worst case.

-stepping <level> Stepping Level. Default is production shipping.

-intstyle <style> Integration flow. ise|flow|silent.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 223

Chapter 14: Speedprint & XILINX:

Speedprint Example Report Three: speedprint xa3s200a-s 4Q -v 1.2 -t 75
Family aspartan3a, Device xa3s200a
Block delay report for device: xa3s200a, speed grade: -4Q
Version identification for speed file is: PRODUCTION 1.39 a 2007-10-05
Speed grades available for this device: -MIN -4 -4Q

This report prepared for speed grade of -4Q using a junction
temperature of 75.000000 degrees C and a supply voltage of 1.200000 volts.

Operating condition ranges for this device:
Voltage 1.140000 to 1.260000 volts
Temperature -40.000000 to 125.000000 degrees Celsius

This speed grade supports reporting delays for specific voltage and
temperature conditions over the above operating condition ranges.

Setup/Hold Calculation Support
Delay Adjustment Factors:

Note: This speed file does not contain any delay adjustment factors.
No external setup and hold delays

This report is intended to present the effect of different speed
grades and voltage/temperature adjustments on block delays.
For specific situations use the Timing Analyzer report instead.

Delays are reported in picoseconds.

When a block is placed in a site normally used for another type of block,
for example, an 10B placed in a Clock I0B site, small variations in delay
may occur which are not included in this report.

NOTE: The delay name is followed by a pair of values representing a relative minimum
delay value and its corresponding maximum value. If a range of values exists for
a delay name, then the smallest pair and the largest pair are reported.

BUFGMUX

TgiOo 195.59 / 217.32
TgiOs 0.00 / 0.00
Tgilo 195.59 / 217.32
Tgils 0.00 / 0.00
TgsiO 613.60 / 613.60
Tgsil 613.60 / 613.60

DCM

Tdmcck _PSEN 16.72 / 16.72
Tdmcck_PSINCDEC 16.72 / 16.72
Tdmckc_PSEN 0.00 / 0.00
Tdmckc_PSINCDEC 0.00 / 0.00
Tdmcko_CLK 14.16 / 16.72
Tdmcko_CLK2X 14.16 / 16.72
Tdmcko_CLKDV 14.16 / 16.72
Tdmcko_CLKFX 14.16 / 16.72
Tdmcko_CONCUR 14.16 / 16.72
Tdmcko_LOCKED 14.16 / 16.72
Tdmcko_PSDONE 14.16 / 16.72
Tdmcko_STATUS 14.16 / 16.72

Command Line Tools User Guide
224 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 14: Speedprint

Speedprint Command Line Syntax

The Speedprint command line syntax is:
speedprint [options] [device name]

options can be any number of the options listed in Speedprint Command Line Options.
Enter options in any order, preceded them with a dash (minus sign on the keyboard)
and separate them with spaces.

device_name is the device for which you want to print information.

Speedprint Example Commands

Command Description

speedprint Prints usage message

speedprint 2v80 Uses the default speed grade

speedprint -s 5 2v80 Displays block delays for speed grade -5

speedprint -2v50e -v 1.9 -t 40 Uses default speed grade at 1.9 volts and 40 degrees C
speedprint v50e -min Displays data for the minimum speed grade

Speedprint Command Line Options

This section describes the Speedprint command line options.
* -intstyle (Integration Style)

¢ -min (Display Minimum Speed Data)

-s (Speed Grade)

e -stepping (Stepping)

-t (Specify Temperature)

-v (Specify Voltage)

-intstyle (Integration Style)
This option limits screen output, based on the integration style that you are running, to
warning and error messages only.
Syntax
-intstyle ise|xflow]|silent

When using —intstyle, one of three modes must be specified:
e -—intstyle ise indicates the program is being run as part of an integrated design

environment.

e -intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e -intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.
Speedprint -min (Display Minimum Speed Data)

This option displays minimum speed data for a device. The speedprint -min option
overrides the speedprint -s option if both are used.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 225

Chapter 14: Speedprint & XILINX:

Syntax

-min

-s (Speed Grade)

This option displays data for the specified speed grade. If the —s option is omitted, delay
data for the default, which is the fastest speed grade, is displayed.

Syntax
-s [speed_grade]

Caution! Do not use leading dashes on speed grades. For example, the syntax
speedprint 5vIx30 -s 3is proper; the syntax speedprint 5vIx30 -s -3
is not.

-stepping (Stepping)

This option causes Speedprint to report delays for the specified stepping. For each
part, there is a default stepping. If the ~stepping command line option is omitted,
Speedprint reports delays for the default stepping. Steppings do not necessarily affect
delays, but may do so.

Syntax
-stepping stepping_value
Examples

speedprint -stepping O
speedprint -stepping ES

-t (Specify Temperature)
This option specifies the operating die temperature in degrees Celsius. If this option

is omitted, Speedprint uses the worst-case temperature.

Syntax
-t temperature

Examples

speedprint -t 85
speedprint -t -20

-v (Specify Voltage)
The speedprint (Specify Voltage) command line option specifies the operating voltage
of the device in volts. If this option is omitted, Speedprint uses the worst-case voltage.

Syntax
-v voltage

Examples

speedprint -v 1.2
speedprint -v 5

Command Line Tools User Guide
226 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 15

BitGen

This chapter describes BitGen. This chapter contains the following sections:
¢ BitGen Overview
¢ BitGen Command Line Syntax

* BitGen Command Line Options

BitGen Overview

BitGen is a Xilinx® command line tool that generates a bitstream for Xilinx device
configuration. After the design is completely routed, you configure the device using
files generated by BitGen. BitGen takes a fully routed Native Circuit Description (NCD)
file as input and produces a configuration Bitstream (BIT) file as output. A BIT file is a
binary file with a .bit extension.

The BIT file contains the configuration information from the NCD file. The NCD file
defines the internal logic and interconnections of the FPGA device, together with
device-specific information from other files associated with the target device. The binary
data in the BIT file is then downloaded into the memory cells of the FPGA device, or
used to create a PROM file. For more information, see the PROMGen chapter.

Note If you have a BMM file as an input to NGDBuild then BitGen will update this
BMM file with the BRAM locations (assigned during PAR) and generate an updated
back annotated _bd.bmm file.

BitGen creates _bd.bmm file when the NCD it is given has BMM information embedded
in it and it is given an ELF/MEM file as input using the —bd switch.

Design Flow

NCD
iroui - PCF NKY
Circuit Description (_) (_)
(Placed/Routed) (Optionat) (Optional)

LL
(Optional) BGN

BitGen
MSK
(Optional) J ™ DRC
—(BIT) (RBT) (NKY)
| PROMGen | | iMPACT]

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 227

Chapter 15: BitGen £ XILINX:

BitGen Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6
e Virtex®-4, Virtex-5, and Virtex-6

BitGen Input Files

BitGen uses the input files shown below.

File Type Acronym| Devices | Extension | Description
Native Input NCD FPGA .ned A physical description of the design mapped, placed
Circuit and routed in the target device. The NCD file must
Description be fully routed.
Physical Input PCF FPGA .pcf An optional user-modifiable ASCII Physical
Constraints Constraints File
File
Encryption | Encryption [NKY FPGA .nky An optional encryption key file. For
Key more information on encryption, see
http://www.xilinx.com/products/ipcenter/DES.htm.
BitGen Output Files
BitGen generates the output files shown below.
File Type | Format File Contents Notes Produced
bgn ASCII Log information for the None Always
BitGen run, including
command line options,
errors, and warnings.
bin Binary Configuration data only The BIN file has no header | When bitgen -g
like the BIT file. Binary:Yes is specified
.bit Binary Proprietary header Meant for input to other Always, unless bitgen -j
information; configuration Xilinx tools, such as is specified
data PROMGen and iMPACT
.drc ASCII Log information or Design None Always, unless bitgen -d
Rules Checker, including is specified
errors and warnings.
dsc ASCII Configuration data in IEEE The IEEE1532 format When bitgen -g
1532 format. is not supported for all IEEE1532:Yes is specified
architectures.
Al ASCII Information on each of the None When bitgen -1 is
nodes in the design that can specified
be captured for readback.
The file contains the absolute
bit position in the readback
stream, frame address, frame
offset, logic resource used,
and name of the component
in the design.
.msd ASCII Mask information for No commands are included. | When bitgen -g
verification only, including Readback is specified.
pad words and frames.
Command Line Tools User Guide
228 www.xilinx.com UG628 (v 12.1) April 19, 2010

http://www.xilinx.com/products/ipcenter/DES.htm

& XILINXe

Chapter 15: BitGen

file

File Type | Format File Contents Notes Produced

.msk Binary The same configuration If a mask bit is O, that bit When bitgen -mis
commands as a BIT file, but | should be verified against specified
which has mask data where | the bit stream data. If a mask
the configuration data is bit is 1, that bit should not

be verified.

nky ASCII Key information when This file is used as an input | When bitgen -g

encryption is desired to iMPACT to program the | Encrypt:Yes is specified
keys. This data should NOT
be used to configure the
device.

<outname>_| ASCII Data for programming the The IEEE1532 format When bitgen -g

key.isc encryption keys in IEEE 1532 | is not supported for all IEEE1532:Yes and bitgen
format architectures. -g Encrypt:Yes are set

.rba ASCII Readback commands, None To produce the .rba
rather than configuration file, bitgen -b must be
commands, and expected used when bitgen -g
readback data where the Readback is specified.
configuration data would
normally be.

.rbb Binary Readback commands, The same as the . rba file, When bitgen -g
rather than configuration but in binary format Readback is specified
commands, and expected
readback data where the
configuration data would
normally be.

.rbd ASCII Expected readback data only, | None When bitgen -g
including pad words and Readback is specified
frames. No commands are
included.

.rbt ASCII Same information as the BIT | The same as the BIT file, but | When bitgen -b is

in ASCII format

specified.

For more information on encryption, see the Answers Database at

http://www.xilinx.com/support.

BitGen Command Line Syntax

The BitGen command line syntax is:

bitgen [options] infile[.ncd] [outfile] [pcf_Ffile.pcf]

options are one or more of the options listed in BitGen Command Line Options.
Enter options in any order, preceded them with a dash (minus sign on the keyboard)
and separate them with spaces.

infile is the name of the Native Circuit Description (NCD) design for which you want

to create the bitstream.

outfile is the name of the output file.

- If you do not specify an output file name, BitGen creates a Bitstream (BIT) file in

your input file directory.

— If you specify any of the options shown in BitGen Options and Output Files,
BitGen creates the corresponding file in addition to BIT file.

- If you do not specify an extension, BitGen appends the correct extension for the

specified option.

— A report file containing all BitGen output is automatically created under the
same directory as the output file.

Command Line Tools User Guide

UG628 (v 12.1) April 19, 2010

www.Xilinx.com

229

http://www.xilinx.com/support

Chapter 15: BitGen

& XILINXe

— The report file has the same root name as the output file and a - bgn extension.

pcf_file is the name of a Physical Constraints File (PCF). BitGen uses the PCF to
interpret CONFIG constraints. CONFIG constraints do the following:

— Control bitstream options

— Opverride default behavior

— Can be overridden by configuration options
BitGen automatically reads the PCF by default.

— If the PCF is the second file specified on the command line, it must have a
-pcT extension.

— If the PCF is the third file specified, the extension is optional. In that case, .pcf
is assumed.

If the PCF is specified, it must exist. Otherwise, the input design name with a .pcf
extension is assumed.

BitGen Options and Output Files

BitGen Option

BitGen Output File

-1

outfile_name .11

-m

outfile_name .msk

-b

outfile_name .rbt

BitGen Command Line Options

This section describes the BitGen command line options.

-b (Create Rawbits File)

-bd (Update Block Rams)

-d (Do Not Run DRC)

-f (Execute Commands File)

-g (Set Configuration)

-intstyle (Integration Style)

-j (No BIT File)

-1 (Create a Logic Allocation File)
-m (Generate a Mask File)

-r (Create a Partial Bit File)

-w (Overwrite Existing Output File)

-b (Create Rawbits File)

This option creates a rawbits (file_name.rbt) file.

Syntax
-b
Combining bitgen -g Readback with bitgen -b also generates an ASCII readback
command file (file_name.rba).
Command Line Tools User Guide
230 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 15: BitGen

The rawbits file consists of ASCII ones and zeros representing the data in the bitstream
file. If you are using a microprocessor to configure a single FPGA device, you can
include the rawbits file in the source code as a text file to represent the configuration
data. The sequence of characters in the rawbits file is the same as the sequence of bits
written into the FPGA device.

-bd (Update Block Rams)

This option updates the bitstream with the block ram content from the specified ELF
or MEM file.

Syntax
-bd file_name{.elf].mem}

-d (Do Not Run DRC)
This option instructs BitGen not to run a design rule check (DRC).
-d

Without the -d option, BitGen runs a design rule check and saves the results in two
output files:

e BitGen report file (Fi le_name_bgn)
e DRC file (File_name.drc).

If you enter bitgen -d:
¢ No DRC information appears in the report file
* No DRC file is produced

Running DRC before a bitstream is produced detects any errors that could cause the
FPGA device to malfunction. If DRC does not detect any errors, BitGen produces a
bitstream file unless you use bitgen -j as described in BitGen -j (No BIT File).

-f (Execute Commands File)

This option executes the command line arguments in the specified command_file.

Syntax
-f command_Ffile

For more information on the - option, see -f (Execute Commands File) in the
Introduction chapter.

-g (Set Configuration)

This option specifies the startup timing and other bitstream options for Xilinx® FPGA
devices. The configuration is set using the sub-options defined below.

Syntax
-g sub-option:setting design.ncd design.bit design.pcf
For example, to enable Readback, use the following syntax:
bitgen -g readback

For a list of specific architecture settings, use bitgen -h [architecture]. The
default value may vary by architecture.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 231

Chapter 15: BitGen

& XILINXe

Sub-Options and Settings

The following sections describe the sub-options and settings for bitgen -g.

* ActivateGCLK

* ActiveReconfig

¢ Binary

e BPI_1st_read_cycle
¢ BPI_page_size

* BusyPin

¢ CclkPin

e Compress

¢ ConfigFallBack

¢ ConfigRate

¢ CRC

¢ CsPin

¢ DClIUpdateMode
¢ DCMShutdown

* DebugBitstream
¢ DinPin

¢ DONE_cycle

¢ DonePin

¢ DonePipe

e drive_awake

¢ DriveDone

¢ Encrypt

* EncryptKeySelect
* en_porb

* en_sw_gsr

e ExtMasterCclk_divide

e ExtMasterCclk_en

failsafe_user

Glutmask
golden_config_addr
GTS_cycle

GWE_cycle

Hswapen

IEEE1532

InitPin

HKey

JTAG_SysMon

Key0

KeyFile

LCK _cycle

MOPin

M1Pin

M2Pin

Match_cycle
MultiBootMode
multipin_wakeup
next_config_addr
next_config_boot_mode
next_config_new_mode
next_config_register_write
OverTempPowerDown
Partial GCLK

PartialLeft

PartialMaskO ...
PartialRight
Persist
PowerdownPin
ProgPin
RdAWrPin
ReadBack
reset_on_error
Security
SelectMAPAbort
StartCBC
StartupClk
sw_clk
sw_gts_cycle
sw_gwe_cycle
SPI_buswidth
TckPin

TdiPin

TdoPin
TIMER_CFG
TIMER_USR
TmsPin
UnusedPin
UserID

wakeup_mask

ActiveReconfig

Prevents the assertions of GHIGH and GSR during configuration. This is required for
the active partial reconfiguration enhancement features.

Architectures Virtex®-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings No, Yes

Default No

232

Command Line Tools User Guide

www.Xilinx.com

UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 15: BitGen

Binary

Creates a binary file with programming data only. Use Binary to extract and view
programming data. Changes to the header do not affect the extraction process.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings No, Yes

Default No

BPI_1st read cycle

Helps synchronize BPI configuration with the timing of page mode operations in Flash
devices. It allows you to set the cycle number for a valid read of the first page. The
BPI_page_size must be set to 4 or 8 for this option to be available

Architectures Virtex-5 and Virtex-6 architectures
Settings 1,23, 4
Default 1

BPI_page_size

For BPI configuration, this sub-option lets you specify the page size which corresponds
to number of reads required per page of Flash memory.

Architectures Virtex-5 and Virtex-6 architectures
Settings 1,4,8
Default 1

BusyPin

Lets you add an internal resistor to either weakly pull up or pull down the pin. Selecting
Pul Inone does not add a resistor, and as a result the pin is not pulled in either direction.

Architectures Virtex-4, Virtex-5, and Virtex-6 architectures
Settings Pullup, Pulldown, Pullnone
Default Pullup
CclkPin
Adds an internal pull-up to the Cclk pin. The Pul Inone setting disables the pullup.
Architectures Virtex-4, Virtex-5, Virtex-6, and Spartan-3
architectures
Settings Pullnone, Pullup
Default Pullup
Compress

Uses the multiple frame write feature in the bitstream to reduce the size of the bitstream,
not just the Bitstream (BIT) file. Using Compress does not guarantee that the size of
the bitstream will shrink. Compression is enabled by setting bitgen -g compress.
Compression is disabled by not setting it.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 233

Chapter 15: BitGen

& XILINXe

The partial BIT files generated with the bitgen -r option automatically use the
multiple frame write feature, and are compressed bitstreams.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings None

Default Off

ConfigFallBack

Enables or disables the loading of a default bitstream when a configuration attempt fails.

Architectures

Virtex-5 and Virtex-6 architectures

Settings

Enable, Disable

Default

Enable

ConfigRate

BitGen uses an internal oscillator to generate the configuration clock, Cclk, when
configuring in a master mode. Use this sub-option to select the rate for Cclk.

Architectures Settings Default

Virtex-4 4,5,7,8,9, 10, 13, 15, 20, 26, 4
30, 34, 41, 45, 51, 55, 60

Virtex-5 2,6,9,13,17,20,24,27,31,35, | 2
38, 42, 46, 49, 53, 56, 60

Virtex-6 2,4,6,10,12, 16, 22,26,33,40, | 2
50, 66

Spartan-3 6,3,12, 25,50 6

Spartan-3A 6,1,3,7,8,10, 12,13, 17, 22, 6
25,27, 33, 44, 50, 100

Spartan-3E 1,3,6,12, 25,50 1

Spartan-6 2,4,6,10,12,16,22,26,33,40, | 2
50, 66

CRC

Controls the generation of a Cyclic Redundancy Check (CRC) value in the bitstream.
When enabled, a unique CRC value is calculated based on bitstream contents. If the
calculated CRC value does not match the CRC value in the bitstream, the device will
fail to configure. When CRC is disabled a constant value is inserted in the bitstream in
place of the CRC, and the device does not calculate a CRC.

Architectures

Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings

Disable, Enable

Default

Enable

234

www.Xilinx.com

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 15: BitGen

CsPin

Lets you add an internal resistor to either weakly pull up or pull down the pin. Selecting
Pul Inone does not add a resistor, and as a result the pin is not pulled in either direction.

Architectures Virtex-4, Virtex-5, and Virtex-6 architectures
Settings Pullup, Pulldown, Pullnone
Default Pullup

DClUpdateMode

Controls how often the Digitally Controlled Impedance circuit attempts to update the
impedance match for DCI IOSTANDARDs.

Architectures Virtex-4, Virtex-5, and Spartan-3 architectures
Settings As required, Continuous, Quiet
Default As required

DCMShutdown

Specifies that the digital clock manager (DCM) should reset if the SHUTDOWN and
AGHIGH commands are loaded into the configuration logic.

Architectures Spartan-3 and Spartan-3E architectures
Settings Disable, Enable
Default Disable

DebugBitstream

Lets you create a debug bitstream. A debug bitstream is significantly larger than
a standard bitstream. DebugBitstream can be used only for master and slave
serial configurations. DebugBitstream is not valid for Boundary Scan or Slave

Parallel/SelectMAP.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings No, Yes

Default No

In addition to a standard bitstream, a debug bitstream offers the following features:
e Writes 32 0s to the LOUT register after the synchronization word

* Loads each frame individually

* Performs a Cyclic Redundancy Check (CRC) after each frame

e Writes the frame address to the LOUT register after each frame

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 235

Chapter 15: BitGen £ XILINX:

DinPin
Lets you add an internal resistor to either weakly pull up or pull down the pin. Selecting
Pul Inone does not add a resistor, and as a result the pin is not BitGen pulled in either

direction.
Architectures Virtex-4, Virtex-5, and Virtex-6 architectures
Settings Pullup, Pulldown, Pullnone
Default Pullup
DONE_cycle

Selects the Startup phase that activates the FPGA Done signal. Done is delayed when
DonePipe=Yes.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings 1,2,3,4,5,6

Default 4

DonePin

Adds an internal pull-up to the DONE pin. The BitGen Pul Inone setting disables the
pullup. Use DonePin only if you intend to connect an external pull-up resistor to this
pin. The internal pull-up resistor is automatically connected if you do not use DonePin.

Architecture Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings Pullup, Pullnone

Default Pullup

DonePipe

Tells the FPGA device to wait on the CFG_DONE (DONE) pin to go High and then wait
for the first clock edge before moving to the Done state.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings No, Yes

Default No

drive_awake

Specifies whether the AWAKE pin is actively driven or acts as an open drain, which
requires an open resistor to pull it high. The AWAKE pin monitors whether or not
the device is in SUSPEND mode.

Architectures Spartan-3A and Spartan-6 architectures
Settings No, Yes
Default No

Command Line Tools User Guide
236 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 15: BitGen

DriveDone
Actively drives the DONE Pin high as opposed to using a pullup.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings No, Yes

Default No

en_porb

Specifies whether Power-On Reset (POR) detection is active for a SUSPEND state. By
default En_porb is enabled (Yes), which means por_b detection is always active.
When the voltage is too low, the FPGA device is reset.

If En_porb is set to No:
* por_b detection is enabled when the SUSPEND pin is low
* por_b detection is disabled when the SUSPEND pin is high.

Architectures Spartan-3A architecture
Settings No, Yes
Default Yes

en_sw_gsr

Restores the value of the flip-flop from the memory cell value when the FPGA wakes
up from suspend mode.

Architectures Spartan-3A and Spartan-6 architectures
Settings No, Yes
Default No
Encrypt
Encrypts the bitstream.
Architectures Virtex-4, Virtex-5, and Virtex-6 architectures,
and Spartan-6 devices LX75/T and larger
Settings No, Yes
Default No

For more information on encryption, see
http://www.xilinx.com/products/ipcenter/DES.htm.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 237

http://www.xilinx.com/products/ipcenter/DES.htm

Chapter 15: BitGen £ XILINX:

EncryptKeySelect

Determines the location of the AES encryption key to be used, either from the
battery-backed RAM (BBRAM) or the eFUSE register.

Note This property is only available when the Encrypt option is set to True.

Architectures Virtex-6 architecture and Spartan-6 devices
LX75/T and larger

Settings bbram, efuse

Default bbram

For more information on encryption, see
http://www.xilinx.com/products/ipcenter/DES.htm.

ExtMasterCclk_en

Allows an external clock to be used as the configuration clock for all master modes. The
external clock must be connected to the dual-purpose USERCCLK pin.

Architectures Spartan-6 architecture
Settings No, Yes
Default No

ExtMasterCclk_divide

Determines if the external master configuration clock is divided internally.

Note This property is only available if the ExtMasterCclk_en property is set to Yes.

Architectures Spartan-6 architecture
Settings 1, multiples of 2 from 2 to 1022
Default 1

failsafe_user

Sets the address of the GENERALDS register, which is a 16-bit register that allows users to
store and access any extra information desired for the failsafe scheme.

Architectures Spartan-6 architecture
Settings <4-digit hex string>
Default 0x0000
Glutmask
Masks out the LUTRAM frame during configuration readback or SEU readback.
Architectures Spartan-3A architecture
Settings No, Yes
Default Yes

Command Line Tools User Guide
238 www.xilinx.com UG628 (v 12.1) April 19, 2010

http://www.xilinx.com/products/ipcenter/DES.htm

& XILINX: Chapter 15: BitGen

golden_config_addr
Sets the address in GENERALS3,4 for the golden configuration image.

Architectures Spartan-6 architecture

Settings <8-digit hex string>

Default 0x00000000
GTS_cycle

Selects the Startup phase that releases the internal 3-state control to the I/O buffers. The
Done setting releases GTS when the DoneIn signal is High. The Done In setting is either
the value of the Done pin or a delayed version if DonePipe=Yes.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings 1, 2,3, 4,5, 6, Done, Keep

Default 5

GWE_cycle

Selects the Startup phase that asserts the internal write enable to flip-flops, LUT RAMs,
and shift registers. GWE_cycle also enables the BRAMS. Before the Startup phase,
both BRAM writing and reading are disabled. The Done setting asserts GWE when
the Done In signal is High. Doneln is either the value of the Done pin or a delayed
version if DonePipe=Yes. The BitGen Keep setting is used to keep the current value
of the GWE signal

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings 1,2,3,4,5, 6, Done, Keep

Default 6

HKey

HKey sets the HMAC authentication key for bitstream encryption. Virtex-6 devices have
an on-chip bitstream-keyed Hash Message Authentication Code (HMAC) algorithm
implemented in hardware to provide additional security beyond AES decryption alone.
Virtex-6 devices require both AES and HMAC keys to load, modify, intercept, or clone
the bitstream.

The pick setting tells BitGen to select a random number for the value. To use this
option, you must first set -g Encrypt:Yes.

Architectures Virtex-6 architecture
Settings Pick, <hex string>
Default Pick

For more information on encryption, see
http://www.xilinx.com/products/ipcenter/DES.htm.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 239

http://www.xilinx.com/products/ipcenter/DES.htm

Chapter 15: BitGen

& XILINXe

HswapenPin

Adds a pull-up, pull-down, or neither to the Hswapen pin. The BitGen Pul Inone
setting shows there is no connection to either the pull-up or the pull-down.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3, and
Spartan-6 architectures

Settings Pullup, Pulldown, Pullnone

Default Pullup

IEEE1532
Creates the IEEE 1532 Configuration File and requires that StartUpClk is set to JTAG
Clock.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings No, Yes

Default No

InitPin
Specifies whether you want to add a Pul lup resistor to the INIT pin, or leave the
INIT pin floating.

Architectures Virtex-4, Virtex-5, and Virtex-6 architectures

Settings Pullup, Pullnone

Default Pullup

JTAG_SysMon

Enables or disables the JTAG connection to the System Monitor.

Architectures Virtex-5 and Virtex-6 architectures
Settings Enable, Disable
Default Enable

For Virtex-5, when this option is Enabled, attribute bit sysmon_test_a[1] is set to 1.

For Virtex-6, when this option is Enabled, attribute bits sysmon_test_e[2:0] are set to
3’b111.

KeyO

KeyO sets the AES encryption key for bitstream encryption. The pick setting tells
BitGen to select a random number for the value. To use this option, you must first
set -g Encrypt:Yes.

Command Line Tools User Guide

240 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXe

Chapter 15: BitGen

Virtex-6 devices require both AES and HMAC keys to load, modify, intercept, or clone

the bitstream.

Architectures Virtex-4, Virtex-5, and Virtex-6 architectures,
and Spartan-6 devices LX75/T and larger

Settings Pick, <hex string>

Default Pick

For more information on encryption, see

http://www.xilinx.com/products/ipcenter/DES.htm.

KeyFile

Specifies the name of the input encryption file (with a . nky file extension). To use this
option, you must first set -g Encrypt:Yes.

Architectures Virtex-4, Virtex-5, and Virtex-6 architectures,
and Spartan-6 devices LX75/T and larger

Settings <string>

Default Not specified

For more information on encryption, see

http://www.xilinx.com/products/ipcenter/DES.htm.

LCK cycle

Selects the Startup phase to wait until DLLs/DCMs/PLLs lock. If you select NoWait, the
Startup sequence does not wait for DLLs/DCMs/PLLs to lock.

Architectures

Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings (Virtex-6 & Spartan-6)

0,1,2,3,4,5, 6,7, NoWait

Settings (All other devices)

0,1, 2,3,4,5, 6, NoWait

Default

NoWait

MOPiINn

Adds an internal pull-up, pull-down or neither to the MO pin. Select Pul Inone to
disable both the pull-up resistor and the pull-down resistor on the M0 pin.

Architectures Virtex-4, Virtex-5, Virtex-6, and Spartan-3
architectures

Settings Pullup, Pulldown, Pullnone

Default Pullup

M1Pin

Adds an internal pull-up, pull-down or neither to the M1 pin. Select Pul Inone to
disable both the pull-up resistor and pull-down resistor on the M1 pin.

Architectures Virtex-4, Virtex-5, Virtex-6, and Spartan-3
architectures

Settings Pullup, Pulldown, Pullnone

Default Pullup

Command Line Tools User Guide

UG628 (v 12.1) April 19, 2010 www.xilinx.com

241

http://www.xilinx.com/products/ipcenter/DES.htm
http://www.xilinx.com/products/ipcenter/DES.htm

Chapter 15: BitGen £ XILINX:

M2Pin

Adds an internal pull-up, pull-down or neither to the M2 pin. Select Pul Inone to
disable both the pull-up resistor and pull-down resistor on the M2 pin.

Architectures Virtex-4, Virtex-5, Virtex-6, and Spartan-3
architectures
Settings Pullup, Pulldown, Pullnone
Default Pullup
Match_cycle

Specifies a stall in the Startup cycle until digitally controlled impedance (DCI) match
signals are asserted.

Architectures Virtex-4, Virtex-5, Virtex-6, and Spartan-3
architectures

Settings 0,1,2,3,4,5, 6, Auto, NoWait

Default Auto

DCI matching does not begin on the Match_cycle that was set in BitGen. The Startup
sequence simply waits in this cycle until DCI has matched. Given that there are a
number of variables in determining how long it will take DCI to match, the number of
CCLK cycles required to complete the Startup sequence may vary in any given system.
Ideally, the configuration solution should continue driving CCLK until DONE goes high.

When the Auto setting is specified, BitGen searches the design for any DCI I/O
standards. If DCI standards exist, BitGen uses Match_cycle:2. Otherwise, BitGen
uses Match_cycle:NoWait.

MultiBootMode

Enables or disables MultiBoot operation of the Spartan-3E. If disabled, the FPGA device
ignores the value on the MBT pin of the startup block.

Architectures Spartan-3E architecture
Settings No, Yes
Default No

multipin_wakeup

Enables the System Configuration Port (SCP) pins to return the FPGA from suspend

mode.
Architectures Spartan-6 architecture
Settings No, Yes
Default No

Command Line Tools User Guide
242 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 15: BitGen

next_config_addr

Sets the starting address for the next configuration in a MultiBoot setup, which is stored
in the Generall and General2 registers.

Architectures Spartan-3A and Spartan-6 architectures
Settings <8-digit hex string>
Default 0x00000000

next_config_boot_mode

Sets the configuration mode for the next configuration in a MultiBoot setup. For
Spartan-6 the MSB must be 0, the next two bits represent Mode pins M[1:0].

Architectures Spartan-3A and Spartan-6 architectures
Settings <3-bit binary string>
Default 001

next_config_new_mode

Selects between the mode value on the mode pins or the mode value specified in the
bitstream by the next_config_boot_mode sub-option. If Yes is chosen, the mode
value specified by the next_config_boot_mode sub-option overrides the value on
the mode pins during a subsequent MultiBoot configuration.

Architectures Spartan-3A and Spartan-6 architectures
Settings No, Yes
Default No

next_config_register_write

Enables the multi-boot header for a golden bitstream. This option is for use with the
Golden Image and will contain the address of the Multi-Boot Image. When the device
loads the Golden Image with this header attached it will jump to the address defined
by next_config_addr and load the multi-boot image. If configuration of the multi-boot
image does not successfully complete the device will reload the Golden Image, skipping
this header.

Architectures Spartan-3A and Spartan-6 architectures

Settings Enable, Disable

Default Enable
OverTempPowerDown

Enables the device to shut down when the system monitor detects a temperature
beyond the acceptable operational maximum. An external circuitry setup for the System
Monitor on is required in order to use this option.

Architectures Virtex-5 and Virtex-6 architectures
Settings Disable, Enable
Default Disable

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010

www.Xilinx.com

243

Chapter 15: BitGen £ XILINX:

Partial GCLK

Adds the center global clock column frames into the list of frames to write out in a
partial bitstream. Partial GCLK is equivalent to PartialMask0: 1.

Architectures Spartan-3, Spartan-3A, and Spartan-3E
architectures
Settings Not Specified
Default Not Specified. No partial masks in use.
PartialLeft

Adds the left side frames of the device into the list of frames to write out in a partial
bitstream. This includes CLB, IOB, and BRAM columns. It does not include the center
global clock column.

Architectures Spartan-3, Spartan-3A, and Spartan-3E
architectures

Settings None

Default Not Specified. No partial masks in use.

PartialMasko ...

The PartialMaskO, PartialMaskl, and PartialMask? settings generate a
bitstream comprised of only the major addresses of block type <0, 1, or 2> that have
enabled value in the mask. The block type is all non-block ram initialization data frames
in the applicable device and its derivatives.

Architectures Spartan-3, Spartan-3A, and Spartan-3E
architectures
Settings All columns enabled, major address mask
Default Not Specified. No partial masks in use.
PartialRight

Adds the right side frames of the device into the list of frames to write out in a partial
bitstream. This includes CLB, IOB, and BRAM columns. It does not include the center
global clock column.

Architectures Spartan-3, Spartan-3A, and Spartan-3E
architectures
Settings None
Default Not Specified. No partial masks in use.
Persist

Prohibits use of the SelectMAP mode pins for use as user I/O. Refer to the datasheet for a
description of SelectMAP mode and the associated pins.

Command Line Tools User Guide
244 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 15: BitGen

Persist is needed for Readback and Partial Reconfiguration using the SelectMAP
configuration pins.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings No, Yes

Default No

PowerdownPin

Puts the pin into sleep mode by specifying whether or not the internal pullup on the
pin is enabled.

Architectures Virtex-4 architecture
Settings Pullup, Pullnone
Default Pullup

ProgPin

Adds an internal pull-up to the ProgPin pin. The BitGen Pul Inone setting disables the
pullup. The pullup affects the pin after configuration.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings Pullup, Pullnone

Default Pullup

RdAWTrPin

Lets you add an internal resistor to either weakly pull up or pull down the pin. Selecting
Pul Inone does not add a resistor, and as a result the pin is not pulled in either direction.

Architectures Virtex-4, Virtex-5, and Virtex-6 architectures

Settings Pullup, Pulldown, Pullnone

Default Pullup

ReadBack
Lets you perform the Readback function by creating the necessary readback files.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings None

Default Not Specified. The readback files are not
created..

Specifying bitgen -g Readback creates the .rbb, .rbd, and .msd files.

Using bitgen -b with bitgen -g Readback also generates an ASCII readback
command file (File_name.rba).

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 245

Chapter 15: BitGen £ XILINX:

reset_on_error

Automatically resets the FPGA device when a CRC error is detected. This applies to
master mode configuration only.

Architectures Spartan-3A and Spartan-6 architectures

Settings No, Yes

Default No

Security
Specifies whether to disable Readback and Reconfiguration.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings Levell, Level2, None

Default None

Specifying Security Levell disables Readback. Specifying Security Level2
disables Readback and Reconfiguration.

SelectMapAbort

Enables or disables the SelectMAP mode Abort sequence. If disabled, an Abort sequence
on the device pins is ignored.

Architectures Virtex-5 architecture
Settings Enable, Disable
Default Enable

SPI_buswidth
Sets the SPI bus to Dual (x2) or Quad (x4) mode for Master SPI configuration from third

party SPI Flash devices.
Architectures Spartan-6 architecture
Settings 1,24
Default 1
StartCBC

Sets the starting cipher block chaining (CBC) value. The BitGen pick setting enables
BitGen to select a random number for the value.

Architectures Virtex-4, Virtex-5, and Virtex-6 architectures,
and Spartan-6 devices LX75/T and larger

Settings Pick, <32-bit hex string>

Default Pick

Command Line Tools User Guide
246 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 15: BitGen

StartupClk

The BitGen StartupClk sequence following the configuration of a device can be
synchronized to either Cclk, a User Clock, or the JTAG Clock. The default is Cclk.

* Cclk - Enter Cclk to synchronize to an internal clock provided in the FPGA device.

* UserClk - Enter UserClk to synchronize to a user-defined signal connected to the
CLK pin of the STARTUP symbol.

* JtagClk - Enter JtagClk to synchronize to the clock provided by JTAG. This clock
sequences the TAP controller which provides the control logic for JTAG.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings Cclk (pin see Note), UserClk (user-supplied),
JtagClk

Default Cclk

Note In modes where Cclk is an output, the pin is driven by an internal oscillator.

sw_clk
Specifies which startup clock is used when the device wakes up from suspend mode.
Architectures Spartan-3A, and Spartan-6 architectures
Settings Startupclk, Internalclk
Default Startupclk

sw_gts_cycle

Applies when the device wakes up from suspend mode. Possible values are between 1

and 1024.
Architectures Spartan-3A and Spartan-6 architectures
Settings 4, <string>
Default 4

sw_gwe_cycle

Applies when the device wakes up from suspend mode. Possible values are between 1

and 1024.
Architectures Spartan-3A and Spartan-6 architectures
Settings 5, <string>
Default 5

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 247

Chapter 15: BitGen £ XILINX:

TckPin

Adds a pull-up, a pull-down or neither to the TCK pin, the JTAG test clock. Selecting
one setting enables it and disables the others. The BitGen Pul Inone setting shows that
there is no connection to either the pull-up or the pull-down.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings Pullup, Pulldown, Pullnone

Default Pullup

TdiPin

Adds a pull-up, a pull-down, or neither to the TDI pin, the serial data input to all JTAG
instructions and JTAG registers. Selecting one setting enables it and disables the others.
The BitGen Pul Inone setting shows that there is no connection to either the pull-up
or the pull-down.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings Pullup, Pulldown, Pullnone

Default Pullup

TdoPin

Adds a pull-up, a pull-down, or neither to the TdoPin pin, the serial data output for all
JTAG instruction and data registers. Selecting one setting enables it and disables the
others. The BitGen Pul Inone setting shows that there is no connection to either the
pull-up or the pull-down.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings Pullup, Pulldown, Pullnone

Default Pullup

TIMER_CFG

Sets the value of the Watchdog Timer in Configuration mode. This option cannot be
used at the same time as TIMER_USR.

Architectures Virtex-5, Virtex-6, and Spartan-6 architectures
Settings (Spartan-6) <4-digit hex string>

Settings (Virtex-5 & Virtex-6) <6-digit hex string>

Default (Spartan-6) 0x0000

Default (Virtex-5 & Virtex-6) OxFFFF

Command Line Tools User Guide
248 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 15: BitGen

TIMER_USR

Sets the value of the Watchdog Timer in User mode. This option cannot be used at
the same time as TIMER_CFG.

Architectures Virtex-5 and Virtex-6 architectures
Settings <6-digit hex string>
Default 0x000000

TmsPin

Adds a pull-up, pull-down, or neither to the TMS pin, the mode input signal to the TAP
controller. The TAP controller provides the control logic for JTAG. Selecting one setting
enables it and disables the others. The BitGen Pul Inone setting shows that there is no

connection to either the pull-up or the pull-down.

Architectures Virtex-4, Virtex-5, Spartan-3, Spartan-3A,
Spartan-3E, and Spartan-6 architectures
Settings Pullup, Pulldown, Pullnone
Default Pullup
UnusedPin

Adds a pull-up, a pull-down, or neither to the unused device pins and the serial data
output (TDO) for all JTAG instruction and data registers. Selecting one setting enables it
and disables the others. The BitGen Pul Inone setting shows that there is no connection
to either the pull-up or the pull-down.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings Pullup, Pulldown, Pullnone

Default Pulldown

UserID

Used to identify implementation revisions. You can enter up to an 8-digit hexadecimal
string in the User 1D register.

Architectures Virtex-4, Virtex-5, Virtex-6, Spartan-3,
Spartan-3A, Spartan-3E, and Spartan-6
architectures

Settings <8-digit hex string>

Default OxFFFFFFFF

wakeup_mask
Determines which of the eight SCP pins are enabled for wake-up from suspend mode.

Note This option is only available if multipin_wakeup is set to True.

Architectures Spartan-6 architecture
Settings <2-digit hex string>
Default 0x00

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 249

Chapter 15: BitGen £ XILINX:

-intstyle (Integration Style)

This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax
-intstyle ise|xflow]|silent

When using —intstyle, one of three modes must be specified:

e —intstyle ise indicates the program is being run as part of an integrated design
environment.

e -intstyle xflow indicates the program is being run as part of an integrated
batch flow.

e —intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

-j (No BIT File)

This option tells BitGen not to create a Bitstream (BIT) file. Use bitgen -j when you
want to generate a report without producing a bitstream. For example, use bitgen
—J to run DRC without producing a bitstream file. However, the .msk or . rbt files
may still be created.

Syntax

-J

-I (Create a Logic Allocation File)

This option creates an ASCII logic allocation file (design. 11) for the selected design.
The logic allocation file shows the bitstream position of latches, flip-flops, IOB inputs
and outputs, and the bitstream position of LUT programming and Block RAMs.

Syntax
-1

In some applications, you may want to observe the contents of the FPGA internal
registers at different times. The file created by bitgen -1 helps you identify which bits
in the current bitstream represent outputs of flip-flops and latches. Bits are referenced
by frame and bit number within the frame.

The iMPACT tool uses the design. Il file to locate signal values inside a readback
bitstream.

-m (Generate a Mask File)

This option creates a mask file. This file determines which bits in the bitstream should
be compared to readback data for verification purposes.

Syntax

-m

250

Command Line Tools User Guide
www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINX: Chapter 15: BitGen

-r (Create a Partial Bit File)

This option is used to create a partial Bitstream (BIT) file.
It compares that BIT file to the Native Circuit Description (NCD) file given to BitGen.
Instead of writing out a full BIT file, it writes out only the part of the BIT file that is
different from the original BIT file.

Syntax

-r bit_file

-w (Overwrite Existing Output File)

This option lets you overwrite an existing BitGen output file.

Syntax
-W

For more information on BitGen output files, see the BitGen Overview.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 251

Command Line Tools User Guide
252 www.xilinx.com UG628 (v 12.1) April 19, 2010

& XILINXs
Chapter 16

BSDILAnno

This chapter describes the BSDLAnno utility. This chapter contains the following
sections:

¢ BSDLAnno Overview

¢ BSDLAnno Command Line Syntax
¢ BSDLAnno Command Line Options
¢ BSDLAnno File Composition

* Boundary Scan Behavior in Xilinx® Devices

BSDLANNo Overview

BSDLAnNno is a Xilinx® command line tool that automatically modifies a Boundary
Scan Description Language (BSDL) file for post-configuration interconnect testing.
BSDLAnNno:

* Obtains the necessary design information from the routed Native Circuit Description
(NCD) file (for FPGA devices) or the PNX file (for CPLD devices)

* Generates a BSDL file that reflects the post-configuration boundary scan architecture
of the device

The boundary scan architecture is changed when the device is configured because certain
connections between the boundary scan registers and pad may change. These changes
must be communicated to the boundary scan tester through a post-configuration BSDL
file. If the changes to the boundary scan architecture are not reflected in the BSDL file,
boundary scan tests may fail.

The Boundary Scan Description Language (BSDL) is defined by IEEE specification 1149.1
as a common way of defining device boundary scan architecture. Xilinx provides both
1149.1 and 1532 BSDL files that describe pre-configuration boundary scan architecture.

For most Xilinx device families, the boundary scan architecture changes after the device
is configured because the boundary scan registers sit behind the output buffer and
the input sense amplifier:

BSCAN Register -> output buffer/input sense amp -> PAD

The hardware is arranged in this manner so that the boundary scan logic operates at
the I/O standard specified by the design. This allows boundary scan testing across the
entire range of available I/O standards.

Command Line Tools User Guide
UG628 (v 12.1) April 19, 2010 www.xilinx.com 253

Chapter 16: BSDLANNO £ XILINX:

Input Files

BitGen Device Support

This program is compatible with the following device families:
* Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

e Virtex®-4, Virtex-5, and Virtex-6

¢ CoolRunner™ XPLA3 and CoolRunner-II

e XC9500 and XC9500XL

BSDLAnno requires two input files to generate a post-configuration Boundary Scan
Description Language (BSDL) file:

* A pre-configuration BSDL file that is automatically read from the Xilinx installation
area.

* The routed Native Circuit Description (NCD) file for FPGA devices, or the PNX file
for CPLD devices specified as the input file.

File Acronym | Extension Description/Notes

Native Circuit NCD -ncd A physical description of the design

Description mapped, placed and routed in the target
device. For FPGA devices.

Boundary Scan BSDL -bsd The length of the BSDL output filename,

Description Language including the .bsd extension, cannot
exceed 24 characters.

External Pin PNX -pnx For CPLD devices.

Description in XDM

Format

Output Files

The output from BSDLAnno is an ASCII (text) formatted Boundary Scan Description
Language (BSDL) file that has been modified to reflect:

* Signal direction (input/output/